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Abstract: The IP Lookup Process is a key bottleneck in 

routing because of increasing routing table sizes, increasing 
traffic, higher speed links, and migration to 128-bit IPv6 
addresses. The IP routing lookup involves computation of the 
best matching prefix (BMP) for which existing solutions, such as 
BSD Radix Tries, scale poorly when traffic in the router 
increases or when employed for IPv6 address lookups. In this 
paper a distributed memory organization technique for the 
routing table was described, which performs extremely well for 
IPv6 address lookup. This mechanism provides lookup for a 
maximum of 16 IPv6 addresses simultaneously. In each lookup 
subsystem, a scheme for BMP using binary search on hash tables 
organized by prefix length was proposed. An optimized storage 
mechanism for binary search on hash table scheme is also 
presented. Using the proposed techniques a router can achieve a 
much higher packet forwarding rate and throughput. 
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I. INTRODUCTION  

The internet is becoming ubiquitous and has been 
exponentially and continuously growing in size. The number 
of users, networks and domains connected to the internet 
seem to be exploding. The 32-bit addresses of the IPv4 format 
are not sufficient to address the rapidly increasing users and 
domains, and will soon be exhausted. Hence the 128-bit IPv6 
address format that has a much larger addressing capacity will 
soon replace the existing IPv4 address format. 

With exponential growth of the number of users and new 
applications (e.g. the web, video conferencing, remote 
imaging and multimedia), it is not surprised that the network 
traffic is doubling every few months. This increasing traffic 
demand requires three key factors to keep pace if the internet 
is to continue to provide good service: link speeds, router data 
throughput, and packet forwarding rates [1]. Readily 
available solutions exist for the first two factors: for example, 
fiber-optic cables can provide faster links, and switching 
technology can be used to move packets from the input 
interface of a router to the corresponding output interface at 
gigabit speeds. The packet forwarding process in a router 
involves finding the prefix in the routing table that provides 
the best match to the destination address of the packet to be 
routed. When a router receives a packet P from an input link 

interface, it must compute which of the prefix in its routing 
table has the longest match when compared to the destination 
address in the packet P. The result of the lookup provides an 
output link interface, to which packet P is forwarded. There is 
some additional bookkeeping, such as updating packet 
headers. But the major bottleneck of packet forward is IP 
lookup in the router table. 

At present many lookup algorithms are available that 
produce high-speed lookups for the IPv4 addresses. But their 
performance degrades when they are scaled to provide lookup 
for the 128-bit IPv6 addresses. This performance degradation 
is due to increased number of memory access and memory 
consumption as a result of the growth of the routing table size 
and address length in IPV6 [2] [3]. 

In the present paper, we describe a novel lookup algorithm, 
Distributed Memory Organization, for lookup of 128-bit IPv6 
addresses. The algorithm is capable of providing lookups for a 
maximum of 16 IPv6 addresses at a time. This is achieved by 
classifying the addresses stored in the routing table by 
analyzing the data of prefixes. Highly efficient lookup 
algorithms using optimized binary searching techniques on 
hash tables have been proposed. The storage mechanisms for 
these methods have also been optimized to significantly 
reduce the memory requirement and the average number of 
memory accesses. 

The rest of the paper is organized as follows. Section 2 
describes the drawbacks to the existing approaches to IP 
lookup. In section 3, we propose IP lookups for IPv6, 
including memory organization mechanism, binary search on 
hash table and marker storage algorithm. Section 4 gives the 
performance analysis and simulation result for the proposed 
IP lookups. Session 5 draws the conclusion. 

 

II. EXISTING APPROACHES TO IP LOOKUP  

In this section, we study some existing approaches to IP 
lookups and their problems. We discuss approaches based on 
trie-based schemes, range search method and hardware 
solutions, that can provide lookup for IPv6 addresses. 

A. Trie Based Schemes  

The most commonly available IP lookup implementation is 



found in the BSD kernel, and is a radix trie implementation 
[4]. If W is the length of an address, the worst-case time in the 
basic implementation can be shown to be O(W2). Current 
implementations have made a number of improvements on 
Sklowers original implementation. The worst case was 
improved to O(W) by requiring that the prefix be contiguous. 
Despite this, the implementation requires up to 32 or 128 
costly memory accesses (for IPv4 or IPv6, respectively). Tries 
also can have large storage requirements [4]. Also, multibit 
tries improve lookup speed (for IPv4 addresses) with respect 
to binary tries, but only by a constant factor in the length 
dimension [5]. Hence, multibit tries scale badly to the longer 
IPv6 addresses. 

 

B. Range Search Approach  

The range search approach gets rid of the length 
dimension of prefixes and performs a search based on the 
endpoints delimiting disjoint basic intervals of addresses [5]. 
The number of basic intervals depends on the covering 
relationship between the prefix ranges, but in the worst case it 
is equal to 2N, where N is the number of prefixes in the 
routing table. Also, the best matching prefix (BMP) must be 
precomputed for each basic interval [11], and in the worst 
case an update needs to recompute the BMP of 2N basic 
intervals. The update complexity is O(2N). Since the range 
search scheme needs to store the endpoints, the memory 
requirement has complexity O(2N). 

 

C. Hardware Solution 

Hardware solutions can potentially use parallelism to gain 
lookup speed. For exact matches, this is done using Content 
Addressable Memories (CAMS) in which every memory 
location, in parallel, compares the input key value to the 
content of that memory location. 

Some CAMS allow a mask of bits that must be matched. 
Although there are expensive so-called ternary CAMS 
available allowing a mask to be specified per word, the mask 
must typically be specified in advance. It has been shown that 
these CAMS can be used to do BMP lookups [6] [7], but the 
solutions are usually expensive. 

Large CAMS are usually slower and much more expensive 
than ordinary memory. Typical CAMS are small, both in the 
number of bits per entry and the number of entries. Thus the 
CAM memory for large address/mask pairs (256 bits needed 
for IPv6) and a huge amount of prefixes appears (currently) to 
be very expensive. Another possibility is to use a number of 
CAMS doing parallel lookups for each prefix length. Again, 
this seems expensive. Probably the most fundamental problem 
with CAMS is that CAM designs have not historically kept 
pace with improvements in RAM memory. Thus a CAM 

based solution (or indeed any hardware solution) runs the risk 
of being made obsolete, in a few years, by software 
technology running on faster processors and memory. 

Recently Sangireddy et. al. suggests BDD based hardware 
address lookup engine, which can reduce the complexity of 
hardware by decreasing the actual effective nodes [8]. But it is 
still not scaled well to IPv6. 

 

III. PROPOSED SCHEMES FOR IPV6  

A. Distributed Memory Organization 

The prefixes stored in a routing table can be classified into 
several flows averagely depending on certain bits of them. For 
instance, we use bits 1, 2, 3 and4 (called ID bits) to classify 
the prefixes in the routing table into 16 categories as shown in 
Table 1. The key point is to store each category of the 
classified addresses in different memory modules so that 
high-speed lookups for a maximum of 16 IPv6 addresses is 
performed simultaneously. 

 

Lookup Unit No. Bits 1, 2, 3 and 4 

1 0001 

2 0010 

3 0011 

… … 

16 1111 

Table 1 Memory module allocation 

For the prefix whose length is less than 4, we can expand it 
to the prefix with length of 4 by controlled prefix expansion 
technique in [9].  For example, the prefix 110* can be 
expanded as follows, 

 

Before expansion After expansion 

110* 
1101* 

1100* 

Table 2 the prefix expansion method 

According to our scheme, the incoming IP address is 
classified into one of the 16 categories by the four ID bits. 
Then the search for the longest matching prefix for this 
incoming address starts in that memory module which 
contains the addresses of the same category. The algorithm 
for parallel lookup is given below.



 

Figure 1 Distributed memory organization and parallel lookup mechanism 

 

Function Lookup (Destination Address) 
Use the ID bits of Destination Addresses to 

classify them. 
Push the IP Addresses into the FIFO of the 

corresponding Lookup unit. 
For each Lookup unit simultaneously do 

While (FIFO not empty) do 
Pop an address from the local FIFO. 
Use binary lookup schemes to find BMP. 
Push the Next Hop Address into Output cache. 

End While 
End Loop  

End Function 
The complete parallel lookup mechanism and the 

distributed memory organization is shown in Figure.1 [10]. 

B. Binary Search on Hash Table 

In each lookup subsystem, the prefixes are organized as 
hash table by prefix length, see Figure 2. The point of scheme 
is to do binary search on the hash table organized by the prefix 
length [1]. 

 

 

Figure 2. Hash tables for each possible prefix  length 

Binary search is to search a sorted array L by repeatedly 
dividing the search interval in half. Begin with an interval 
covering the whole array. If the value of the search key is less 
than the item in the middle of the interval, narrow the interval 
to the lower half. Otherwise narrow it to the upper half. 
Repeatedly check until the value is found or the interval is 
empty. The algorithm for basic binary search approach is 
given below. 

 
Function BasicBinarysearch (A) 
Initialize the search range S as the whole array L 

do 
Let i correspond to the middle level in S 
Extract the first L[i].length bits of A to A’ 

Search (A’, L[i].hash) // search for A’ 
If found then set S= lower half of S 
Else set S= upper half of S 

While S is not a single entry 
End Function 

 

The search time of binary search in the worst case is log2N, 
where N is the length of array. On the other hand, the 
complexity of linear search is O(N). It is obvious that binary 
search strategy is better than linear search strategy. In figure 2, 
N is the number of prefix lengths (3), and the start point is the 
middle hash table whose prefix length is 12. 

However, for binary search to work, we need markers in 
tables to direct binary search to look for matching prefixes of 
greater length. Here is an example to illustrate the need of 
markers. 

For instance, we have prefixes P1=0, P2=00, P3=111. 
Suppose the prefix we search for is 111, the search starts from 
the prefix P2. Since the P2 does not match, the search 



algorithm should proceed further till a match is found. But 
since there is no indication of the path to be taken, this 
approach fails to arrive at the best matching prefix. 

To solve this problem, the binary search on hash table using 
markers proposed in [1] performs fairly well with respect to 
the number of memory access needed for obtaining a best 
matching prefix for IPv6 destination packet address. 
Cooperating with this search algorithm, our distributed 
memory organization technique provides multiple lookups 
keeping the number of access for each lookup to be 
logarithmic. We store markers, which are the first n bits of the 
prefix to be inserted, where n is the length of the prefix at that 
level. These markers are stored at the levels, which would be 
reached while searching for a matching prefix, with prefix 
length shorter than the prefix being inserted. So in the above 
example, we add a marker entry 11, to indicate P3, at the level 
containing P2 to direct the binary search to the lower half of 
the routing table for a better match.  

With markers in each hash table, we start binary search on 
hash table corresponding to the median length of array L. If 
we find match, we search the upper half of L; if we fail we 
search the lower half of L. The procedure is repeated until we 
find BMP for the destination address. The procedure with 
marker is shown in Figure 3.  

 

 

Figure 3 Binary search on Hash tables 

Also the number of markers to be stored for each prefix is 
an important issue to be handled. Inefficient usage of markers 
will degrade the performance of the binary search and also 
increase the memory consumption. So an efficient approach to 
store markers is proposed in the next section. This approach 
enables efficient storage of markers when compared to the 
marker requirement stated in [1]. 

 

C. Marker Storage Algorithm 

Our approach to store markers for a prefix is based on the 
bit pattern of the prefix. As already explained it suffices to 

store markers in those levels that would be visited by the 
binary search and whose length is shorter than that of the 
prefix to be inserted. The algorithm for our marker storage is 
given below. 

Function MarkerStore (prefix) 
Initialize count = 0 , Level = 0 
Initialize bin = 0000 

// Scans the prefix to find the length of prefix 
count = Length(prefix) 

// Find the binary of the length ‘count’ 
bin = Binary (prefix) 

// Scan this ‘bin’ for number of 1’s 
count = Scan (bin) 
For I = count step -1 loop till I > 0 do 
Level = Level + (2 ^ I) 
Add a marker entry for the prefix in  

the level indicated by “Level” 
Search for BMP of marker and store  

it in the BMP field of the marker. 
Next I 

End Function 

 

For instance, if the prefix is P1=11001, then it should be 
inserted in the level 5 (0101 in binary). The number of 1s in 
the binary format of 5 is 2. Based on the above algorithm, the 
Level would become 4, which is the only level that would be 
reached during the search for a prefix of length 5 and whose 
length is smaller than 5. Hence a marker is added to level 4 for 
the prefix whose length is 5.  

This marker storage algorithm is efficient as the number of 
potential parents for storing the markers is optimized in 
comparison to the existing approach stated in [1]. Also, since 
the number of markers stored for the prefix to be inserted is 
reduced, the overhead of marker insertion during the prefix 
insertion process is also reduced. 

Consider the prefixes P1=1, P2=00, P3= 111. Now 
according to the marker storage logic explained above, marker 
for P3 will be stored at the level containing P2. Now when a 
prefix 110 is to be searched, the search starts at P2 and 
proceeds to the lower half of the table since a matching 
marker is available. But the best prefix match is available in 
the upper half of the hash table. Such a marker misleads the 
searching algorithm. A solution for this misleading marker 
problem has been proposed in [1]. A new field called BMP is 
stored for each marker. This field contains the best matching 
prefix of that marker. When we use the misleading marker and 
fail to arrive at the best matching prefix, the value in the BMP 
field of the latest marker arrived at is the longest matching 
prefix for the destination address. 

 



IV. PERFORMANCE MEASUREMENT  

A. Analysis of the Queuing System  

We employ queuing theory to model the lookup subsystem, 
which is modeled as a pure waiting system. We assume that 
the arrival process of the incoming IP addresses is Poissonian 
process with mean arrival rate as λ. The service process for 
each lookup unit is considered to IDD and exponentially 
distributed with the mean service rate µ. Here in our lookup 
algorithm, the number of service stations S (i.e. number of 
memory banks) is 16. Hence the arrival rate for each queue is 
λ/16. The input destination IP address can be serviced in any 
of these stations based on the bit patterns as explained in the 
section 3. Now the service time for each lookup unit is Ts = 
1/µ. Since we have S lookup units, the arrival rate for each 
unit reduces, while the service rate is still µ. The state 
transition diagram for each lookup unit is as in Figure 4. 

 

Figure 4 The state transition diagram for each lookup unit 

For the whole lookup subsystem, 16 lookup units can be 
modeled as one server with the mean service rate as 16µ while 
the arrival rate for the whole system is λ. The corresponding 
state diagram is shown in Figure 5. 

 
Figure 5 The state transition diagram for the whole lookup 

 subsystem 

Local balance equations give that,  
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Thus the following performance measures can be obtained, 

Utilization factor: 
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Now in our model we use 16 memory modules to store the 
route prefixes. Let us assume that λ/µ = 4/1. Now ρ = 1/4, 
using equation (3). Other parameters that are calculated based 
on this, using equations (4), (5) and (6), are  
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1

3
1
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Now it is necessary to prove that the queue size is not large 
when there is a burst in traffic. Also we need to show that the 
waiting time is less for every IP Packet in the queue. As the 
network payload cannot be more than 0.8 (which is commonly 
adapted for by networking applications), the delay Ts will be 
less of the order of 0.1. As a result, the average queue size 
found using (4) with the above parameters is 4, which is 
within the very safe range. In this limit case, the total delay 
time is 0.031 seconds, and the waiting time is 0.025 seconds.  

In this example, the number of lookup is increased by a 
factor of 16 when compared to the conventional method. 
Hence, small queues suffice each lookup unit to implement the 
proposed algorithm while number of lookups is increased. 

 



B.  Simulation results of Binary on Hash Table 

Simulations were conducted to determine the number of 
memory access for both the binary search on hash table 
algorithms. The binary search on hash table mechanism 
requires a maximum of 7 memory accesses to find the longest 
matching prefix for a 128-bit IPv6 address.  

Simulation results of the algorithms described above were 
used to construct the graphs shown in Figure. 6. It was 
observed that the average number of memory accesses for the 
lookup of a 128-bit IPv6 address is 6 for optimized binary 
search scheme. 

 

 

Figure 6 Simulation Result 

 

V. CONCLUSION 

We have proposed an algorithm for the best matching 
prefix search for the next generation IPv6 addresses that uses 
the hash based approach involving optimized storage of 
markers. This approach is extremely efficient that scales with 
the logarithm of address size and so is very close to the 
theoretical unit of O (logN).  

By classifying the prefixes in the routing table, we are able 
to provide a maximum of 16 simultaneous lookups. This 
drastically increases the packet-forwarding rate of a router 
even for IPv6 address formats. We have also optimized the 
marker storage methodology for searching the hash table so 
that the memory requirement for the markers reduces 
considerably.  

We have also analyzed the system performance based on 
queue theory for the proposed algorithms. The simulation 
were also been done whose results were used to construct a 
graph between the number of memory access and the length of 
the prefix to be searched. From these results it is observed that 
the proposed methods perform better than the existing 
algorithms for the lookup of IPv6 addresses. 
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