
IP Lookup in IPv6 Networks

Shuping Liu
Networking Technology Lab.

Helsinki University of Technology, Finland
Email: sliu1@cc.hut.fi

Abstract: The IP Lookup Process is a key bottleneck in

routing because of increasing routing table sizes, increasing
traffic, higher speed links, and migration to 128-bit IPv6
addresses. The IP routing lookup involves computation of the
best matching prefix (BMP) for which existing solutions, such as
BSD Radix Tries, scale poorly when traffic in the router
increases or when employed for IPv6 address lookups. In this
paper a distributed memory organization technique for the
routing table was described, which performs extremely well for
IPv6 address lookup. This mechanism provides lookup for a
maximum of 16 IPv6 addresses simultaneously. In each lookup
subsystem, a scheme for BMP using binary search on hash tables
organized by prefix length was proposed. An optimized storage
mechanism for binary search on hash table scheme is also
presented. Using the proposed techniques a router can achieve a
much higher packet forwarding rate and throughput.

Keywords— IP lookup, IPv6, Distributed Memory
Organization, Binary search, Hash table.

I. INTRODUCTION

The internet is becoming ubiquitous and has been
exponentially and continuously growing in size. The number
of users, networks and domains connected to the internet
seem to be exploding. The 32-bit addresses of the IPv4 format
are not sufficient to address the rapidly increasing users and
domains, and will soon be exhausted. Hence the 128-bit IPv6
address format that has a much larger addressing capacity will
soon replace the existing IPv4 address format.

With exponential growth of the number of users and new
applications (e.g. the web, video conferencing, remote
imaging and multimedia), it is not surprised that the network
traffic is doubling every few months. This increasing traffic
demand requires three key factors to keep pace if the internet
is to continue to provide good service: link speeds, router data
throughput, and packet forwarding rates [1]. Readily
available solutions exist for the first two factors: for example,
fiber-optic cables can provide faster links, and switching
technology can be used to move packets from the input
interface of a router to the corresponding output interface at
gigabit speeds. The packet forwarding process in a router
involves finding the prefix in the routing table that provides
the best match to the destination address of the packet to be
routed. When a router receives a packet P from an input link

interface, it must compute which of the prefix in its routing
table has the longest match when compared to the destination
address in the packet P. The result of the lookup provides an
output link interface, to which packet P is forwarded. There is
some additional bookkeeping, such as updating packet
headers. But the major bottleneck of packet forward is IP
lookup in the router table.

At present many lookup algorithms are available that
produce high-speed lookups for the IPv4 addresses. But their
performance degrades when they are scaled to provide lookup
for the 128-bit IPv6 addresses. This performance degradation
is due to increased number of memory access and memory
consumption as a result of the growth of the routing table size
and address length in IPV6 [2] [3].

In the present paper, we describe a novel lookup algorithm,
Distributed Memory Organization, for lookup of 128-bit IPv6
addresses. The algorithm is capable of providing lookups for a
maximum of 16 IPv6 addresses at a time. This is achieved by
classifying the addresses stored in the routing table by
analyzing the data of prefixes. Highly efficient lookup
algorithms using optimized binary searching techniques on
hash tables have been proposed. The storage mechanisms for
these methods have also been optimized to significantly
reduce the memory requirement and the average number of
memory accesses.

The rest of the paper is organized as follows. Section 2
describes the drawbacks to the existing approaches to IP
lookup. In section 3, we propose IP lookups for IPv6,
including memory organization mechanism, binary search on
hash table and marker storage algorithm. Section 4 gives the
performance analysis and simulation result for the proposed
IP lookups. Session 5 draws the conclusion.

II. EXISTING APPROACHES TO IP LOOKUP

In this section, we study some existing approaches to IP
lookups and their problems. We discuss approaches based on
trie-based schemes, range search method and hardware
solutions, that can provide lookup for IPv6 addresses.

A. Trie Based Schemes

The most commonly available IP lookup implementation is

found in the BSD kernel, and is a radix trie implementation
[4]. If W is the length of an address, the worst-case time in the
basic implementation can be shown to be O(W2). Current
implementations have made a number of improvements on
Sklowers original implementation. The worst case was
improved to O(W) by requiring that the prefix be contiguous.
Despite this, the implementation requires up to 32 or 128
costly memory accesses (for IPv4 or IPv6, respectively). Tries
also can have large storage requirements [4]. Also, multibit
tries improve lookup speed (for IPv4 addresses) with respect
to binary tries, but only by a constant factor in the length
dimension [5]. Hence, multibit tries scale badly to the longer
IPv6 addresses.

B. Range Search Approach

The range search approach gets rid of the length
dimension of prefixes and performs a search based on the
endpoints delimiting disjoint basic intervals of addresses [5].
The number of basic intervals depends on the covering
relationship between the prefix ranges, but in the worst case it
is equal to 2N, where N is the number of prefixes in the
routing table. Also, the best matching prefix (BMP) must be
precomputed for each basic interval [11], and in the worst
case an update needs to recompute the BMP of 2N basic
intervals. The update complexity is O(2N). Since the range
search scheme needs to store the endpoints, the memory
requirement has complexity O(2N).

C. Hardware Solution

Hardware solutions can potentially use parallelism to gain
lookup speed. For exact matches, this is done using Content
Addressable Memories (CAMS) in which every memory
location, in parallel, compares the input key value to the
content of that memory location.

Some CAMS allow a mask of bits that must be matched.
Although there are expensive so-called ternary CAMS
available allowing a mask to be specified per word, the mask
must typically be specified in advance. It has been shown that
these CAMS can be used to do BMP lookups [6] [7], but the
solutions are usually expensive.

Large CAMS are usually slower and much more expensive
than ordinary memory. Typical CAMS are small, both in the
number of bits per entry and the number of entries. Thus the
CAM memory for large address/mask pairs (256 bits needed
for IPv6) and a huge amount of prefixes appears (currently) to
be very expensive. Another possibility is to use a number of
CAMS doing parallel lookups for each prefix length. Again,
this seems expensive. Probably the most fundamental problem
with CAMS is that CAM designs have not historically kept
pace with improvements in RAM memory. Thus a CAM

based solution (or indeed any hardware solution) runs the risk
of being made obsolete, in a few years, by software
technology running on faster processors and memory.

Recently Sangireddy et. al. suggests BDD based hardware
address lookup engine, which can reduce the complexity of
hardware by decreasing the actual effective nodes [8]. But it is
still not scaled well to IPv6.

III. PROPOSED SCHEMES FOR IPV6

A. Distributed Memory Organization

The prefixes stored in a routing table can be classified into
several flows averagely depending on certain bits of them. For
instance, we use bits 1, 2, 3 and4 (called ID bits) to classify
the prefixes in the routing table into 16 categories as shown in
Table 1. The key point is to store each category of the
classified addresses in different memory modules so that
high-speed lookups for a maximum of 16 IPv6 addresses is
performed simultaneously.

Lookup Unit No. Bits 1, 2, 3 and 4

1 0001

2 0010

3 0011

… …

16 1111

Table 1 Memory module allocation

For the prefix whose length is less than 4, we can expand it
to the prefix with length of 4 by controlled prefix expansion
technique in [9]. For example, the prefix 110* can be
expanded as follows,

Before expansion After expansion

110*
1101*

1100*

Table 2 the prefix expansion method

According to our scheme, the incoming IP address is
classified into one of the 16 categories by the four ID bits.
Then the search for the longest matching prefix for this
incoming address starts in that memory module which
contains the addresses of the same category. The algorithm
for parallel lookup is given below.

Figure 1 Distributed memory organization and parallel lookup mechanism

Function Lookup (Destination Address)
Use the ID bits of Destination Addresses to

classify them.
Push the IP Addresses into the FIFO of the

corresponding Lookup unit.
For each Lookup unit simultaneously do

While (FIFO not empty) do
Pop an address from the local FIFO.
Use binary lookup schemes to find BMP.
Push the Next Hop Address into Output cache.

End While
End Loop

End Function
The complete parallel lookup mechanism and the

distributed memory organization is shown in Figure.1 [10].

B. Binary Search on Hash Table

In each lookup subsystem, the prefixes are organized as
hash table by prefix length, see Figure 2. The point of scheme
is to do binary search on the hash table organized by the prefix
length [1].

Figure 2. Hash tables for each possible prefix length

Binary search is to search a sorted array L by repeatedly
dividing the search interval in half. Begin with an interval
covering the whole array. If the value of the search key is less
than the item in the middle of the interval, narrow the interval
to the lower half. Otherwise narrow it to the upper half.
Repeatedly check until the value is found or the interval is
empty. The algorithm for basic binary search approach is
given below.

Function BasicBinarysearch (A)
Initialize the search range S as the whole array L

do
Let i correspond to the middle level in S
Extract the first L[i].length bits of A to A’

Search (A’, L[i].hash) // search for A’
If found then set S= lower half of S
Else set S= upper half of S

While S is not a single entry
End Function

The search time of binary search in the worst case is log2N,
where N is the length of array. On the other hand, the
complexity of linear search is O(N). It is obvious that binary
search strategy is better than linear search strategy. In figure 2,
N is the number of prefix lengths (3), and the start point is the
middle hash table whose prefix length is 12.

However, for binary search to work, we need markers in
tables to direct binary search to look for matching prefixes of
greater length. Here is an example to illustrate the need of
markers.

For instance, we have prefixes P1=0, P2=00, P3=111.
Suppose the prefix we search for is 111, the search starts from
the prefix P2. Since the P2 does not match, the search

algorithm should proceed further till a match is found. But
since there is no indication of the path to be taken, this
approach fails to arrive at the best matching prefix.

To solve this problem, the binary search on hash table using
markers proposed in [1] performs fairly well with respect to
the number of memory access needed for obtaining a best
matching prefix for IPv6 destination packet address.
Cooperating with this search algorithm, our distributed
memory organization technique provides multiple lookups
keeping the number of access for each lookup to be
logarithmic. We store markers, which are the first n bits of the
prefix to be inserted, where n is the length of the prefix at that
level. These markers are stored at the levels, which would be
reached while searching for a matching prefix, with prefix
length shorter than the prefix being inserted. So in the above
example, we add a marker entry 11, to indicate P3, at the level
containing P2 to direct the binary search to the lower half of
the routing table for a better match.

With markers in each hash table, we start binary search on
hash table corresponding to the median length of array L. If
we find match, we search the upper half of L; if we fail we
search the lower half of L. The procedure is repeated until we
find BMP for the destination address. The procedure with
marker is shown in Figure 3.

Figure 3 Binary search on Hash tables

Also the number of markers to be stored for each prefix is
an important issue to be handled. Inefficient usage of markers
will degrade the performance of the binary search and also
increase the memory consumption. So an efficient approach to
store markers is proposed in the next section. This approach
enables efficient storage of markers when compared to the
marker requirement stated in [1].

C. Marker Storage Algorithm

Our approach to store markers for a prefix is based on the
bit pattern of the prefix. As already explained it suffices to

store markers in those levels that would be visited by the
binary search and whose length is shorter than that of the
prefix to be inserted. The algorithm for our marker storage is
given below.

Function MarkerStore (prefix)
Initialize count = 0 , Level = 0
Initialize bin = 0000

// Scans the prefix to find the length of prefix
count = Length(prefix)

// Find the binary of the length ‘count’
bin = Binary (prefix)

// Scan this ‘bin’ for number of 1’s
count = Scan (bin)
For I = count step -1 loop till I > 0 do
Level = Level + (2 ^ I)
Add a marker entry for the prefix in

the level indicated by “Level”
Search for BMP of marker and store

it in the BMP field of the marker.
Next I

End Function

For instance, if the prefix is P1=11001, then it should be
inserted in the level 5 (0101 in binary). The number of 1s in
the binary format of 5 is 2. Based on the above algorithm, the
Level would become 4, which is the only level that would be
reached during the search for a prefix of length 5 and whose
length is smaller than 5. Hence a marker is added to level 4 for
the prefix whose length is 5.

This marker storage algorithm is efficient as the number of
potential parents for storing the markers is optimized in
comparison to the existing approach stated in [1]. Also, since
the number of markers stored for the prefix to be inserted is
reduced, the overhead of marker insertion during the prefix
insertion process is also reduced.

Consider the prefixes P1=1, P2=00, P3= 111. Now
according to the marker storage logic explained above, marker
for P3 will be stored at the level containing P2. Now when a
prefix 110 is to be searched, the search starts at P2 and
proceeds to the lower half of the table since a matching
marker is available. But the best prefix match is available in
the upper half of the hash table. Such a marker misleads the
searching algorithm. A solution for this misleading marker
problem has been proposed in [1]. A new field called BMP is
stored for each marker. This field contains the best matching
prefix of that marker. When we use the misleading marker and
fail to arrive at the best matching prefix, the value in the BMP
field of the latest marker arrived at is the longest matching
prefix for the destination address.

IV. PERFORMANCE MEASUREMENT

A. Analysis of the Queuing System

We employ queuing theory to model the lookup subsystem,
which is modeled as a pure waiting system. We assume that
the arrival process of the incoming IP addresses is Poissonian
process with mean arrival rate as λ. The service process for
each lookup unit is considered to IDD and exponentially
distributed with the mean service rate µ. Here in our lookup
algorithm, the number of service stations S (i.e. number of
memory banks) is 16. Hence the arrival rate for each queue is
λ/16. The input destination IP address can be serviced in any
of these stations based on the bit patterns as explained in the
section 3. Now the service time for each lookup unit is Ts =
1/µ. Since we have S lookup units, the arrival rate for each
unit reduces, while the service rate is still µ. The state
transition diagram for each lookup unit is as in Figure 4.

Figure 4 The state transition diagram for each lookup unit

For the whole lookup subsystem, 16 lookup units can be
modeled as one server with the mean service rate as 16µ while
the arrival rate for the whole system is λ. The corresponding
state diagram is shown in Figure 5.

Figure 5 The state transition diagram for the whole lookup

 subsystem

Local balance equations give that,

µπλπ 161 ∗=∗− ii (1)

with the help of 1
0

=∑
∞

=i
iπ , we get

016
π

µ
λπ

i

i ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= (2)

Where
µ
λµπ

16
16

0
−

= .

Thus the following performance measures can be obtained,

Utilization factor:

µ
λρ

16
= (3)

Mean queue length for memory module:

λµ
λ

ρ
ρ

−
=

−
=

161
x (4)

Average delay time for an incoming address:

λµρµ −
=

−
∗=

16
1

1
1

16
1D (5)

Average waiting time in queue for an incoming address:

λµ
λ

µρ
ρ

µ −
∗=

−
∗=

16
1

116
1w (6)

Now in our model we use 16 memory modules to store the
route prefixes. Let us assume that λ/µ = 4/1. Now ρ = 1/4,
using equation (3). Other parameters that are calculated based
on this, using equations (4), (5) and (6), are

3
1

=x

µ
1

3
4
∗=D

µ
1

3
1
∗=W

Now it is necessary to prove that the queue size is not large
when there is a burst in traffic. Also we need to show that the
waiting time is less for every IP Packet in the queue. As the
network payload cannot be more than 0.8 (which is commonly
adapted for by networking applications), the delay Ts will be
less of the order of 0.1. As a result, the average queue size
found using (4) with the above parameters is 4, which is
within the very safe range. In this limit case, the total delay
time is 0.031 seconds, and the waiting time is 0.025 seconds.

In this example, the number of lookup is increased by a
factor of 16 when compared to the conventional method.
Hence, small queues suffice each lookup unit to implement the
proposed algorithm while number of lookups is increased.

B. Simulation results of Binary on Hash Table

Simulations were conducted to determine the number of
memory access for both the binary search on hash table
algorithms. The binary search on hash table mechanism
requires a maximum of 7 memory accesses to find the longest
matching prefix for a 128-bit IPv6 address.

Simulation results of the algorithms described above were
used to construct the graphs shown in Figure. 6. It was
observed that the average number of memory accesses for the
lookup of a 128-bit IPv6 address is 6 for optimized binary
search scheme.

Figure 6 Simulation Result

V. CONCLUSION

We have proposed an algorithm for the best matching
prefix search for the next generation IPv6 addresses that uses
the hash based approach involving optimized storage of
markers. This approach is extremely efficient that scales with
the logarithm of address size and so is very close to the
theoretical unit of O (logN).

By classifying the prefixes in the routing table, we are able
to provide a maximum of 16 simultaneous lookups. This
drastically increases the packet-forwarding rate of a router
even for IPv6 address formats. We have also optimized the
marker storage methodology for searching the hash table so
that the memory requirement for the markers reduces
considerably.

We have also analyzed the system performance based on
queue theory for the proposed algorithms. The simulation
were also been done whose results were used to construct a
graph between the number of memory access and the length of
the prefix to be searched. From these results it is observed that
the proposed methods perform better than the existing
algorithms for the lookup of IPv6 addresses.

REFERENCES

[1] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner,
“Scalable high speed IP routing lookups”, in Proc.
SIGCOMM’97, Cannes, France.

[2] S. Deering and R. Hinden. (1995), “Internet Protocol,
Version 6 (IPv6)”, Specification RFC 1883, IETF.
[Online]. Available HTTP: http://www.ietf.org/rfc/.

[3] C. Huitema, “IPv6: The New Internet Protocol”,
Englewood Cliffs, NJ: Prentice-Hall, 1996.

[4] H. J. Chao, “Next Generation Routers”, Proceedings of
the IEEE, Vol.90, No.9, September 2002.

[5] M. A. Ruiz-Sanchez, E. W. Biersack, W. Dabbous,
“Survey and Taxanomy of IP Address Lookup
Algorithms”, IEEE Network, Vol.15, Issue 2, pp.8-23,
March-April 2001.

[6] A. McAuley and P. Francis, “Fast routing table lookup
US- ing CAMS”, In Proceedings of INFOCOM, pages
1382-1391, March-April 1993.

[7] A. J. McAuley, P. F. Tsuchiya, and D. V. Wilson, “Fast
multilevel hierarchical routing table using content-
addressable memory”, U.S. Patent serial number 034444,
Assignee Bell Communications research Inc Livingston
NJ, January 1995.

[8] R. Sangireddy and A. K. Somani, “High-Speed IP
Routing With Binary Decision Diagrams Based Hardware
Address Lookup Engine”, IEEE on Selected Areas in
Communications, Vol. 21, No. 4, May 2003.

[9] V. Srinivasan, G. Varghese, “Fast IP Lookups Using
Controlled Prefix Expansion”, ACM TOCS, Vol.17, pp.1-
40, Feb.1999.

[10] K. Venkatesh, S. Aravind, R. Ganapath and T. Srinivasan,
“A High Performance Parallel IP Lookup Technique
Using Distributed Memory Organization”, In Proc.
ITCC’04.

[11] B. Lampson, V. Srinivasan, G. Varghese, “IP Lookups
Using Multiway and Multicolumn Search”, IEEE/ACM
Transactions on Networking, Vol.7, No.3, June 1999.

