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ABSTRACT

We describe anew scalabl e application-layer multicast protocol, specif-

ically designed for low-bandwidth, datastreaming applicationswith
large receiver sets. Our schemeisbased upon ahierarchical cluster-
ing of the application-layer multicast peersand can support a num-
ber of different data delivery trees with desirable properties.

We present extensive simulations of both our protocol and the
Naradaapplication-layer multicast protocol over Internet-liketopol o-
gies. Our resultsshow that for groups of size 32 or more, our proto-
col has lower link stress (by about 25%), improved or similar end-
to-end latencies and similar failure recovery properties. More im-
portantly, it is able to achieve these results by using orders of mag-
nitude lower control traffic.

Finally, we present results from our wide-area testbed in which
we experimented with 32-100 member groupsdistributed over 8dif-
ferent sites. Inour experiments, averagegroup membersestablished
and maintained low-latency paths and incurred a maximum packet
loss rate of less than 1% as members randomly joined and left the
multicast group. The average control overhead during our experi-
ments was less than 1 Kbpsfor groups of size 100.

Categoriesand Subject Descriptors

C.2.2[Computer-Communication Networ ks]: Network Protocols;
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; C.4[Computer SystemsOrganization]: Performanceof Sys-
tems
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Algorithms, Design, Performance, Experimentation
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1. INTRODUCTION

Multicasting isan efficient mechanismfor packet delivery in one-
many datatransfer applications. It eliminatesredundant packet repli-
cation in the network. It aso decouplesthe size of the receiver set
from the amount of state kept at any single node and therefore, is
an useful primitive to scale multi-party applications. However, de-
ployment of network-layer multicast [11] has not been widely adopted
by most commercial 1SPs, and thus large parts of the Internet are
still incapable of native multicast more than a decade after the pro-
tocols were devel oped. Application-Layer Multicast protocols|[10,
12, 7, 14, 15, 24, 18] do not change the network infrastructure, in-
stead they implement multicast forwarding functionality exclusively
at end-hosts. Such application-layer multicast protocolsand arein-
creasingly being used to implement efficient commercia content-
distribution networks.

In this paper, we present anew application-layer multicast proto-
col which has been developed in the context of the NICE project at
the University of Maryland *. NICE is arecursive acronym which
stands for NICE is the Internet Cooperative Environment. In this
paper, we refer to the NI CE application-layer multicast protocol as
simply the NICE protocol. This protocol is designed to support ap-
plications with large receiver sets. Such applications include news
and sportsticker servicessuch as I nfogate (http://www.infogate.com)
and ESPN Bottomline (http://www.espn.com); real-timestock quotes
and updates, e.g. the Yahoo! Market tracker, and popular Inter-
net Radio sites. All of these applications are characterized by very
large (potentially tens of thousands) receiver setsand relatively low
bandwidth soft real-time data streams that can withstand someloss.
We refer to thisclass of large receiver set, low bandwidth real-time
data applications as data stream applications. Data stream appli-
cations present an unique challenge for application-layer multicast
protocols: the large receiver sets usually increase the control over-
head whiletherelatively low-bandwidth datamakesamortizing this
control overhead difficult. NICE can be used to implement very
large data stream applications since it has a provably small (con-
stant) control overhead and produces|ow latency distribution trees.
Itispossibletoimplement high-bandwidth applicationsusing NICE
as well; however, in this paper, we concentrate exclusively on low
bandwidth data streams with large receiver sets.

1.1 Application-Layer Multicast

Thebasicideaof application-layer multicastisshowninFigure 1.
Unlike native multicast where data packets are replicated at routers
inside the network, in application-layer multicast data packets are
replicated at end hosts. Logically, the end-hosts form an overlay
network, and the goal of application-layer multicast isto construct
and maintain an efficient overlay for datatransmission. Sinceappli-

1 See htp://www.cs.umd.edu/projects/nice
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Figure 1: Network-layer and application layer multicast.
Squarenodesarerouters, and circular nodesareend-hosts. The
dotted linesrepresent peerson the overlay.

cation-layer multicast protocolsmust send theidentical packetsover
the same link, they are less efficient than native multicast. Two in-
tuitive measuresof “goodness’ for application layer multicast over-
lays, namely stress and stretch, were defined in [10]). The stress
metric is defined per-link and counts the number of identical pack-
etssent by a protocol over each underlying link inthe network. The
stretch metric is defined per-member and is the ratio of path-length
from the source to the member along the overlay to the length of
thedirect unicast path. Consider an application-layer multicast pro-
tocol in which the data source unicasts the data to each receiver.
Clearly, this“multi-unicast” protocol minimizes stretch, but doesso
at acost of O(N) stress at links near the source (IV is the number
of group members). It also requires O( N )control overhead at some
single point. However, this protocol is robust in the sense that any
number of group member failures do not affect the other members
in the group.

In general, application-layer multicast protocol s can be evaluated
along three dimensions:

o Quality of the data delivery path: The quality of the tree is
measured using metrics such as stress, stretch, and node de-
grees.

o Robustnessof theoverlay: Sinceend-hostsarepotentially less
stable than routers, it is important for application-layer mul-
ticast protocolsto mitigate the effect of receiver failures. The
robustnessof application-layer multicast protocol sismeasured
by quantifying the extent of the disruption in data delivery
when different membersfail, and the timeit takesfor the pro-
tocol to restore delivery to the other members. We present the
first comparison of this aspect of application-layer multicast
protocols.

e Control overhead: For efficient use of network resources, the
control overhead at the members should be low. Thisis an
important cost metric to study the scalability of the scheme
to large member groups.

1.2 NICE Trees

Our goals for NICE were to develop an efficient, scalable, and
distributed tree-building protocol which did not require any under-
lying topology information. Specifically, theNICE protocol reduces
theworst-case stateand control overhead at any memberto O(log V),
maintains a constant degree bound for the group members and ap-
proach the O(log N') stretch bound possible with atopol ogy-aware
centralized algorithm. Additionally, we also show that an average
member maintains state for a constant number of other members,
andincurs constant control overheadfor topol ogy creation and main-
tenance.

IntheNICE application-layer multicast scheme, wecreateahier-
archically-connected control topology. Thedatadelivery pathisim-

plicitly defined in the way the hierarchy is structured and no addi-
tional route computations are required.

Along with the analysis of the various bounds, we also present a
simulation-based performance evaluation of NICE. In our simula-
tions, we compare NICE to the Narada application-layer multicast
protocol [10]. Naradawasfirst proposed as an efficient application-
layer multicast protocol for small group sizes. Extensionsto it have
subsequently been proposed [9] to tailor its applicability to high-
bandwidth media-streaming applicationsfor these groups, and have
been studied using both simulations and implementation. Lastly, we
present results from awide-areaimplementation in which we quan-
tify the NICE run-time overheads and convergence properties for
various group Sizes.

1.3 Roadmap

The rest of the paper is structured as follows: In Section 2, we
describe our general approach, explain how different delivery trees
are built over NICE and present theoretical bounds about the NICE
protocol. In Section 3, we present the operational details of the pro-
tocol. We present our performance eval uation methodology in Sec-
tion 4, and present detailed analysis of the NICE protocol through
simulations in Section 5 and a wide-area implementation in Sec-
tion 6. We elaborate on related work in Section 7, and concludein
Section 8.

2. SOLUTION OVERVIEW

The NICE protocol arrangesthe set of end hostsinto a hierarchy;
the basic operation of the protocol is to create and maintain the hi-
erarchy. The hierarchy implicitly defines the multicast overlay data
paths, as described later in this section. The member hierarchy is
crucial for scalability, since most members are in the bottom of the
hierarchy and only maintain state about a constant number of other
members. The members at the very top of the hierarchy maintain
(soft) state about O(log N) other members. Logically, each mem-
ber keeps detailed state about other members that are near in the
hierarchy, and only has limited knowledge about other membersin
thegroup. Thehierarchical structureisalsoimportant for localizing
the effect of member failures.

TheNICE hierarchy describedin this paper issimilar to themem-
ber hierarchy usedin[3] for scalable multicast group re-keying. How-
ever, the hierarchy in [3], is layered over a multicast-capable net-
work andisconstructed using network multicast services(e.g. scoped
expanding ring searches). We build the necessary hierarchy on a
unicast infrastructure to provide a multicast-capable network.

In this paper, we use end-to-end latency as the distance metric
between hosts. While constructing the NICE hierarchy, members
that are “close” with respect to the distance metric are mapped to
the same part of the hierarchy: this allows us to produce trees with
low stretch.

In the rest of this section, we describe how the NICE hierarchy
is defined, what invariants it must maintain, and describe how it is
used to establish scalable control and data paths.

2.1 Hierarchical Arrangement of Members

The NICE hierarchy is created by assigning members to differ-
ent levels(or layers) asillustrated in Figure 2. Layersare numbered
sequentially with the lowest layer of the hierarchy being layer zero
(denoted by Lo). Hosts in each layer are partitioned into a set of
clusters. Each cluster isof size between k and 3k — 1, wherek isa
constant, and consists of a set of hosts that are close to each other.
We explain our choice of the cluster size bounds later in this paper
(Section 3.2.1). Further, each cluster hasa cluster leader. The pro-
tocol distributedly chooses the (graph-theoretic) center of the clus-
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Figure 3: Control and data delivery pathsfor a two-layer hierarchy. All A; hosts are membersof only Lo clusters. All B; hostsare
member s of both layers Lo and Z;. Theonly C host isthe leader of the L; cluster comprising of itself and all the B hosts.
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Figure2: Hierarchical arrangement of hostsin NICE. Thelay-
ersarelogical entitiesoverlaid on the same underlying physical
network.

ter to be its leader, i.e. the cluster leader has the minimum maxi-
mum distance to all other hosts in the cluster. This choice of the
cluster leader isimportant in guaranteeing that a new joining mem-
ber is quickly able to find its appropriate position in the hierarchy
using avery small number of queries to other members.

Hostsare mapped to layersusing thefollowing scheme: All hosts
are part of thelowest layer, L. The clustering protocol at L, parti-
tions these hostsinto a set of clusters. The cluster leaders of al the
clustersin layer L; join layer L;4+1. Thisis shown with an exam-
plein Figure 2, using k = 3. Thelayer L, clusters are [ABCD],
[EFGH] and [JKLM]2. In this example, we assume that C, F' and
M are the centers of their respective clusters of their L, clusters,
and are chosen to be the leaders. They form layer 1, and are clus-
tered to createthe singlecluster, [CFM], inlayer L. F' isthecenter
of thiscluster, and henceitsleader. Therefore F' belongsto layer 7.,
aswell.

TheNICE clustersand layersare created using adistributed algo-
rithm described in the next section. The following properties hold
for the distribution of hostsin the different layers:

e A host belongsto only asingle cluster at any layer.

o If ahost is present in some cluster in layer L;, it must occur
in one cluster in each of the layers, Lo, ..., L;—1. Infact, it
isthe cluster-leader in each of these lower layers.

e If ahostisnot presentin layer, L;, it cannot be present in any
layer L;, wherej > 1.

o Each cluster hasits size bounded between k and 3k — 1. The
leader isthe graph-theoretic center of the cluster.

e There are at most log, N layers, and the highest layer has
only a single member.

2We denote a cluster comprising of hosts X,Y,Z,... by
[XYZ...].

We also define the term super-cluster for any host, X. Assume
that host, X, belongsto layers Lo, ..., L;—1 and no other layer,
and let [..XYZ..] bethecluster it belongsit inits highest layer (i.e.
layer L;—1) with Y itsleader in that cluster. Then, the super-cluster
of X isdefined as the cluster, in the next higher layer (i.e. L;), to
which itsleader Y belongs. It follows that there is only one super-
cluster defined for every host (except the host that belongs to the
top-most layer, which does not have a super-cluster), and the super-
cluster is in the layer immediately above the highest layer that H
belongsto. For example, in Figure2, cluster [CFM] in Layer 1isthe
super-cluster for hosts B, A, and D. In NICE each host maintains
state about all the clustersit belongs to (one in each layer to which
it belongs) and about its super-cluster.

2.2 Control and Data Paths

The host hierarchy can be used to define different overlay struc-
tures for control messages and data delivery paths. The neighbors
on the control topology exchange periodic soft state refreshes and
do not generate high volumes of traffic. Clearly, itisuseful to have
a structure with higher connectivity for the control messages, since
thiswill cause the protocol to converge quicker.

In Figure 3, weillustrate the choices of control and data paths us-
ing clusters of size 4. The edges in the figure indicate the peerings
between group members on the overlay topology. Each set of four
hosts arranged in a 4-clique in Panel 0 are the clustersin layer L.
Hosts By, B1, B2 and C, are the cluster leaders of these four Lo
clustersandformthesingleclusterinlayer ;. Host Cj istheleader
of this cluster inlayer L;. Intherest of the paper, weuse Cl; (X)
to denote the cluster in layer L; to which member X belongs. Itis
defined if and only if X belongsto layer L;.

The control topology for the NICE protocol isillustrated in Fig-
ure 3, Panel 0. Consider a member, X, that belongs only to layers
Lo, ..., L;. Itspeersonthecontrol topology arethe other members
of the clustersto which X belongsin each of theselayers, i.e. mem-
bersof clustersCly (X), ... , Cl;(X). Usingtheexample(Figure 3,
Panel 0), member A, belongs to only layer Lo, and therefore, its
control path peersarethe other membersinits Lo cluster,i.e. A1, A,
and By. In contrast, member By belongsto layers Lo and L, and
therefore, its control path peers are al the other members of its L
cluster (i.e. Ao, A1 and A3) and L, cluster (i.e. B, B, and Cp).
In this control topology, each member of a cluster, therefore, ex-
changes soft state refreshes with all the remaining members of the
cluster. Thisallowsall cluster membersto quickly identify changes
in the cluster membership, and in turn, enables faster restoration of
aset of desirableinvariants (described in Section 2.4), which might
be violated by these changes.

The delivery path for multicast datadistribution needsto beloop-
free, otherwise, duplicate packet detection and suppression mecha-



Procedure : MulticastDataForward(#, p)
{h € layersLy,...,L;inclustersCly(h),...
for jin[o,...,1]
if (p ¢ Cly(h))
ForwardDataToSet(Cl; (k) — {h})
end if
end for

’Cli(h) }

Figure4: Dataforwarding operation at a hogt, &, that itself re-
ceived the data from host p.

nisms need to beimplemented. Therefore, in the NICE protocol we
choose the data delivery path to be atree. More specifically, given
a data source, the data delivery path is a source-specific tree, and
isimplicitly defined from the control topology. Each member ex-
ecutes an instance of the Procedure MulticastDataForward given
in Figure 4, to decide the set of members to which it needsto for-
ward thedata. Panels1, 2 and 3 of Figure 3illustrate the consequent
source-specific trees when the sources are at members Aq, A7 and
Co respectively. We call thisthe basic data path.

To summarize, in each cluster of each layer, the control topology
isacligue, and the data topology is a star. It is possible to choose
other structures, e.g. in each cluster, aring for control path, and a
balanced binary tree for data path.

2.3 Analysis

Each cluster in the hierarchy hasbetween k& and 3k — 1 members.
Then for the control topology, a host that belongs only to layer Lo
peers with O(k) other hosts for exchange of control messages. In
general, a host that belongs to layer ; and no other higher layer,
peerswith O(k) other hostsineachof thelayers Lo, . .. , L;. There-
fore, the control overhead for this member is O(k 1). Hence, the
cluster-leader of the highest layer cluster (Host C, in Figure3), peers
withatotal of O(k log V') neighbors. Thisisthe worst case control
overhead at a member.

It follows using amortized cost analysisthat the control overhead
at an average member is a constant. The number of members that
occur in layer L; and no other higher layer isbounded by O( N /k*).
Therefore, the amortized control overhead at an average member is

log N

1 N . . log N 1, .
< — ToR.1= v ) v
S 2 ki =0+ (B +0() ~ O)

with asymptotically increasing N. Thus, the control overhead is
O(k) for the average member, and O(k log V) in the worst case.
The same holds analogously for stress at members on the basic data
path 2. Also, the number of application-level hops on the basic data
path between any pair of membersis O(log V).

Whilean O(k log N) peersonthedatapath isan acceptableupper-
bound, we have defined enhancementsthat further reducethe upper-
bound of the number of peers of amember to aconstant. The stress
at each member onthisenhanced datapath (created using local trans-
formationsof the basic datapath) isthusreduced to aconstant, while
the number of application-level hops between any pair of members
still remain bounded by O(log V). We outline this enhancement to
the basic datapathin [4].

2.4 |nvariants

All the propertiesdescribed in the analysishold aslong as the hi-
erarchy is maintained. Thus, the objective of NICE protocol is to

Note that the stress metric at members is equivalent to the degree
of the members on the datadelivery tree.

scalably maintainthe host hierarchy as new membersjoin and exist-
ing members depart. Specifically the protocol described in the next
section maintains the following set of invariants:

e At every layer, hosts are partitioned into clusters of size be-
tween k and 3k — 1.

e All hosts belong to an L, cluster, and each host belongs to
only asingle cluster at any layer

e The cluster leaders are the centers of their respective clusters
and form the immediate higher layer.

3. PROTOCOL DESCRIPTION

In this section we describe the NICE protocol using a high-level
description. Detailed description of the protocol (including packet
formats and pseudocode) can be found in [4].

We assume the existence of a special host that all members know
of a-priori. Using nomenclature developedin [10], wecall this host
the Rendezvous Point (RP). Each host that intends to join the appli-
cation-layer multicast group contactsthe RP to initiate the join pro-
cess. For ease of exposition, we assume that the RP is always the
leader of thesingle cluster inthehighest layer of the hierarchy. Itin-
teracts with other cluster membersin this layer on the control path,
and isbypassed onthedatapath. (Clearly, itispossiblefor the RPto
not be part of the hierarchy, and for the leader of the highest layer
cluster to maintain a connection to the RP, but we do not bel abor
that complexity further). For an application such as streaming me-
dia delivery, the RP could be a distinguished host in the domain of
the data source.

TheNICE protocol itself hasthreemain components: initial clus-
ter assignment asanew host joins, periodic cluster maintenanceand
refinement, and recovery from leader failures. We discussthesein
turn.

3.1 New Host Joins

When a new host joins the multicast group, it must be mapped
to somecluster in layer Lo. Weillustrate the join procedurein Fig-
ure5. Assumethat host A, wantstojointhemulticast group. First,
it contacts the RP with its join query (Panel 0). The RP responds
with the hosts that are present in the highest layer of the hierarchy.
Thejoining host then contactsall membersinthe highest layer (Panel
1) to identify the member closest to itself. In the example, the high-
est layer L, hasjust onemember, Cy, which by default isthe closest
member to A, amongst layer L. members. Host Cy informs A;2
of the three other members (Bo, B1 and B:) inits L; cluster. A;»
then contacts each of these memberswith the join query to identify
the closest member among them (Panel 2), and iteratively usesthis
procedureto find its L, cluster.

It is important to note that any host, A, which belongs to any
layer L; isthe center of its L;_, cluster, and recursively, is an ap-
proximation of the center among al membersinall L, clustersthat
are below this part of the layered hierarchy. Hence, querying each
layer in succession from the top of the hierarchy to layer L, results
in a progressive refinement by the joining host to find the most ap-
propriatelayer L, cluster tojointhat is closeto thejoining member.
The outline of this operation are presented in pseudocode as Proce-
dure BasicJoinLayer in Figure 6.

We assume that all hosts are aware of only a single well-known
host, the RP, from which they initiate the join process. Therefore,
overheads dueto join query-response messages is highest at the RP
and descreases down the layers of the hierarchy. Under avery rapid
sequence of joins, the RPwill need to handlealarge number of such

joinquery-response messages. Alternate and more scalablejoin schemes
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Figure5: Host A2 joinsthe multicast group.

Procedure : BasicJoinLayer (k, z)

Cl; — Query(RP,—)

while (5 > 1)
Find y st. dist(h,y) < dist(h,z),z,y € Cl;
Clj—1(y) — Query(y,j —1)
Decrement 5, Cl; — Cl;_1(y)

endwhile

Join cluster Cl;

Figure 6: Basic join operation for member &, tojoin layer L;.
¢ = 0 for anew member. If : > 0, then & is already part of
layer L;_1. Query(y,j — 1) seeksthe member ship information
of Cl;_1(y) from member y. Query(R P, —) seeksthe member-
ship infor mation of thetopmost layer of thehierarchy, fromthe
RP.

are possible if we assume that the joining host is aware of some
other “nearby” host that isalready joined tothe overlay. Infact, both
Pastry [19] and Tapestry [23] alleviate a potential bottleneck at the
RP for arapid sequence of joins, based on such an assumption.

3.1.1 Join Latency

Thejoining process involvesamessage overhead of O(k log V)
query-response pairs. The join-latency depends on the delays in-
curred in this exchanges, which istypically about O(log N') round-
trip times. In our protocol, we aggressively locate possible “good”
peers for a joining member, and the overhead for locating the ap-
propriate attachments for any joining member isrelatively large.

Toreducethedelay betweenamember joining the multicast group,
and itsreceipt of the first data packet on the overlay, we alow join-
ing members to temporarily peer, on the data path, with the leader
of the cluster of the current layer it is querying. For example, in
Figure 5, when A;. is querying the hosts By, B: and B; for the
closest point of attachment, it temporarily peerswith Cy (leader of
thelayer L; cluster) onthe datapath. Thisallowsthejoining host to
start receiving multicast dataon the group within asingleround-trip
latency of itsjoin.

3.1.2 Joining Higher Layers

An important invariant in the hierarchical arrangement of hosts
isthat the leader of a cluster be the center of the cluster. Therefore,
asmembersjoin andleave clusters, the cluster-leader may occasion-
ally change. Consider achangein leadership of acluster, C, inlayer
L;. Thecurrent leader of C removesitself fromall layers 7,41 and
higher to which it is attached. A new leader is chosen for each of
these affected clusters. For example, anew leader, &, of C in layer

L ischosen whichisnow required to joinits nearest ;41 cluster.
Thisisits current super-cluster (which by definitionisthe cluster in
layer ;41 towhichtheoutgoing leader of C' wasjoinedto), i.e. the
new |leader replaces the outgoing leader in the super-cluster. How-
ever, if the super-cluster information is stale and currently invalid,
then the new leader, k, invokes the join procedure to join the near-
est L,41 cluster. It callsBasicJoinLayer (h,j + 1) and theroutine
terminates when the appropriate layer ;41 cluster isfound. Also
note that the BasicJoinLayer requires interaction of the member &
with the RP. The RP, therefore, aids in repairing the hierarchy from
occasional overlay partitions, i.e. if the entire super-cluster infor-
mation becomes stale in between the periodic HeartBeat messages
that are exchanged between cluster members. If the RP fails, for
correct operation of our protocol, we require that it be capable of
recovery within a reasonable amount of time.

3.2 Cluster Maintenance and Refinement

Each member H of acluster C', sends a HeartBeat message ev-
ery h secondsto each of its cluster peers (neighbors on the control
topology). The message containsthe distance estimateof H to each
other member of C. Itis possible for H to have inaccurate or no
estimate of the distance to some other members, e.g. immediately
after it joins the cluster.

The cluster-leader includes the complete updated cluster mem-
bershipinitsHeartBeat messagestoall other members. Thisallows
existing members to set up appropriate peer relationships with new
cluster members on the control path. For each cluster in level L;,
the cluster-leader also periodically sends the its immediate higher
layer cluster membership (whichisthe super-cluster for al the other
members of the cluster) to that Z; cluster.

All of the cluster member state is sent via unreliable messages
and is kept by each cluster member as soft-state, refreshed by the
periodic HeartBeat messages. A member H is declared no longer
part of a cluster independently by all other members in the cluster
if they do not receive amessagefrom H for a configurable number
of HeartBeat message intervals.

3.21 Cluster Split and Merge

A cluster-leader periodically checksthesize of itscluster, and ap-
propriately splits or merges the cluster when it detects a size bound
violation. A cluster that just exceeds the cluster size upper bound,
3k — 1 issplitinto two equal-sized clusters.

For correct operation of the protocol, we could have chosen the
cluster size upper bound to be any value > 2k — 1. However, if
2k—1 waschosen astheupper bound, then the cluster would require
to split when it exceeds this upper bound (i.e. reachesthe size 2k).
Subsequently, an equal-sized split would create two clusters of size
k each. However, asingle departure from any of these new clusters
would violate the size lower bound and require a cluster merge op-



eration to be performed. Choosing alarger upper bound (e.g. 3k-1)
avoids this problem. When the cluster exceeds this upper bound, it
issplitintotwo clustersof sizeat least 3% /2, and therefore, requires
at least k/2 member departures before a merge operation needs to
be invoked.

Thecluster leader initiatesthis cluster split operation. Given a set
of hosts and the pairwise distances between them, the cluster split
operation partitionsthem into subsetsthat meet thesize bounds, such
that the maximum radius (in a graph-theoretic sense) of the new set
of clustersis minimized. Thisissimilar to the K -center problem
(known to be NP-Hard) but with an additional size constraint. We
use an approximation strategy — the leader splits the current clus-
ter into two equal-sized clusters, such that the maximum of the radii
among the two clustersis minimized. It also chooses the centers of
the two partitionsto be the leaders of the new clustersand transfers
leadership to the new leaders through Leader Transfer messages. If
these new clusters still violate the size upper bound, they are split
by the new leaders using identical operations.

If the size of acluster, Cl;(J) (in layer L;) with leader J, falls
below k, the leader J, initiates a cluster merge operation. Note, J
itself belongsto alayer L;41 cluster, Cl;11(J). J choosesitsclos-
est cluster-peer, K, in Cl;;1¢5). K isalsothe leader of alayer L,
cluster, Cl;(K'). J initiates the merge operation of C; with Cl;( K)
by sending a ClusterMergeRequest message to K. J updates the
members of Cl;(J) with this merge information. K similarly up-
dates the members of Cl; ( K'). Following the merge, J removesit-
self from layer Li41 (i.e. from cluster Cliq1(J).

3.2.2 Refining Cluster Attachments

When a member is joining alayer, it may not always be able to
locate the closest cluster in that layer (e.g. dueto lost join query
or join response, etc.) and instead attaches to some other cluster in
that layer. Therefore, eachmember, H,inany layer (say ;) period-
ically probesall membersin itssuper-cluster (they aretheleaders of
layer L; clusters), to identify the closest member (say J) toitself in
the super-cluster. If J isnot the leader of the ; cluster towhich A
belongs then such aninaccurate attachment is detected. In thiscase,
H leavesits current layer L; cluster and joinsthe layer L; cluster
of which J is the leader.

3.3 Host Departureand Leader Selection

When a host A leaves the multicast group, it sends a Remove
messageto all clusterstowhichitisjoined. Thisisagraceful-leave.
However, if H failswithout being able to send out this message all
cluster peersof H detectsthis departure through non-receipt of the
periodic HeartBeat message from H. If H was aleader of aclus-
ter, thistriggers a new leader selection in the cluster. Each remain-
ing member, J, of the cluster independently select a new leader of
the cluster, depending on who J estimates to be the center among
these members. Multipleleadersarere-conciledinto asingleleader
of the cluster through exchange of regular HeartBeat messages us-
ing an appropriate flag (Leader Transfer) each time two candidate
leaders detect this multiplicity. We present further details of these
operationsin [4].

It is possible for members to have an inconsistent view of the
cluster membership, and for transient cycles to develop on the data
path. These cycles are eliminated once the protocol restores the hi-
erarchy invariants and reconciles the cluster view for all members.

4. EXPERIMENTAL METHODOLOGY

We have analyzed the performance of the NICE protocol using
detailed simulations and a wide-areaimplementation. In the simu-
lation environment, we compare the performance of NICE to three

other schemes: multi-unicast, native | P-multicast usingthe Core Ba-
sed Tree protocol [2], and the Narada application-layer multicast
protocol (as givenin [10]). In the Internet experiments, we bench-
mark the performance metricsagainst direct unicast pathsto themem-
ber hosts.

Clearly, native IP multicast treeswill havethe least (unit) stress,
sinceeach link forwardsonly asinglecopy of each datapacket. Uni-
cast paths have the lowest latency and so we consider them to be of
unit stretch®. They provideusareference against which to compare
the application-layer multicast protocols.

4.1 DataModd

In all these experiments, we model the scenario of a data stream
source multicasting to the group. We chose a single end-host, uni-
formly at random, to be the datasource generating aconstant bit rate
data. Each packet in the datasequence, effectively, samplesthe data
path on the overlay topology at that timeinstant, and the entire data
packet sequence captures the evolution of the data path over time.

4.2 PerformanceMetrics

We compare the performance of the different schemesaong the
following dimensions:

e Quality of data path: Thisismeasured by three different met-
rics— tree degreedistribution, stresson links and routersand
stretch of data paths to the group members.

e Recovery from host failure: As hostsjoin and leave the mul-
ticast group, the underlying data delivery path adapts accord-
ingly to reflect these changes. In our experiments, we mod-
eled member departures from the group as ungraceful depar-
tures, i.e. membersfail instantly and are unable to send ap-
propriate leave messagesto their existing peers on the topol-
ogy. Therefore, in transience, particularly after host failures,
path to some hosts may be unavailable. It is also possiblefor
multiple paths to exist to a single host and for cycles to de-
velop temporarily.

To study these effects, we measured the fraction of hoststhat
correctly receive the data packets sent from the source asthe
group membership changed. We aso recorded the number
of duplicates at each host. In all of our simulations, for both
the application-layer multicast protocols, the number of du-
plicates wasinsignificant and zero in most cases.

e Control traffic overhead: We report the mean, variance and
the distribution of the control bandwidth overheads at both
routers and end hosts.

5. SIMULATION EXPERIMENTS

We have implemented a packet-level simulator for the four dif-
ferent protocols. Our network topol ogies were generated using the
Transit-Stub graphmodel, usingthe GT-ITM topol ogy generator [5].
All topologiesin these simulations had 10, 000 routers with an av-
erage node degree between 3 and 4. End-hosts were attached to a
set of routers, chosen uniformly at random, from among the stub-
domain nodes. The number of such hosts in the multicast group
were varied between 8 and 20438 for different experiments. In our
simulations, we only modeled loss-less links; thus, there is no data
loss due to congestion, and no notion of background traffic or jit-
ter. However, datais lost whenever the application-layer multicast

* There are some recent studies[20, 1] to show that this may not al-
way's be the case; however, we use the native unicast latency as the
reference to compare the performance of the other schemes.



protocol failsto provide apath from the sourceto areceiver, and du-
plicates are received whenever there is more than one path. Thus,
our simulations study the dynamicsof the multicast protocol and its
effects on datadistribution; in our implementation, the performance
isalso affected by other factors such asadditional link latenciesdue
to congestion and drops due to cross-traffic congestion.

For comparison, we haveimplemented the entire Narada protocol
fromthe description given in [10]. The Narada protocol isa“mesh-
first” application-layer multicast approach, designed primarily for
small multicast groups. In this approach the members distributedly
construct amesh which isan overlay topology where multiple paths
exists between pairs of members. Each member participatesin a
routing protocol on this overlay mesh topology to generate source-
specific treesthat reach all other members. In Narada, theinitial set
of peer assignments to create the overlay mesh is done randomly.
Whilethisinitial data delivery path may be of “poor” quality, over
time Narada adds “good” links and discards “bad” links from the
overlay. Naradahas O( N'?) aggregate control overhead because of
its mesh-first nature: it requires each host to periodically exchange
updates and refreshes with all other hosts. The protocol, as defined
in [10], has a number of user-defined parameters that we needed
to set. These include the link add/drop thresholds, link add/drop
probe frequency, the periodic refresh rates, the mesh degree, etc.
We present detail ed description of our implementation of theNarada
protocol, including the impact of different choices of parameters,
in[4].

5.1 Simulation Results

We havesimulated awide-rangeof topol ogies, group sizes, mem-
ber join-leave patterns, and protocol parameters. For NICE, we set
the cluster size parameter, k, to 3in al of the experiments presented
here. Broadly, our findings can be summarized as follows:

o NICE trees have data paths that have stretch comparable to
Narada.

e Thestresson links and routersare lower in NICE, especially
asthe multicast group size increases.

e Thefailure recovery of both the schemes are comparable.

o NICE protocol demonstratesthat itis possibleto providethese
performancewith orders of magnitudelower control overhead
for groups of size > 32.

We begin with results from a representative experiment that cap-
tures all the of different aspects comparing the various protocols.

5.1.1 Smulation Representative Scenario

Thisexperiment hastwo different phases: ajoinphaseand aleave
phase. In the join phase a set of 128 members® join the multicast
group uniformly at random between the simulated time 0 and 200
seconds. These hosts are alowed to stabilize into an appropriate
overlay topology until simulationtime 1000 seconds. Theleavephase
starts at time 1000 seconds: 16 hosts |eave the multicast group over
a short duration of 10 seconds. This is repeated four more times,
at 100 second intervals. The remaining 48 members continue to be
part of the multicast group until the end of simulation. All mem-
ber departures are model ed as host fail ures since they have the most
damaging effect on datapaths. We experimented with different num-
bers of member departures, from a single member to 16 members
leaving over theten second window. Sixteen departuresfromagroup

5We show resultsfor the 128 member case because that isthe group
size used in the experiments reported in [10]; NICE performs in-
creasingly better with larger group sizes.

of size 128 within a short time window is a drastic scenario, but it
helpsillustrate the failure recovery modes of the different protocols
better. Member departuresin smaller sizes cause correspondingly
lower disruption on the data paths.

We experimented with different periodic refresh ratesfor Narada.
For a higher refresh rate the recovery from host failuresis quicker,
but at acost of higher control traffic overhead. For Narada, we used
different valuesfor route updatefrequenciesand periodsfor probing
other mesh members to add or drop links on the overlay. In our re-
sults, wereport results from using route update frequencies of once
every 5 seconds (Iabeled Narada-5), and once every 30 seconds (la
beled Narada-30). The 30 second update period correspondsto the
what was used in [10]; weran with the 5 second update period since
the heartbeat period in NICE was set to 5 seconds. Note that we
could run with a much smaller heartbeat period in NICE without
significantly increasing control overhead since the control messages
are limited within clusters and do not traverse the entire group. We
also varied the mesh probe period in Narada and observed data path
instability effect discussed above. Intheseresults, we set the Narada
mesh probe period to 20 seconds.

Data Path Quality

In Figures 7 and 8, we show the average link stress and the aver-
age path lengths for the different protocols as the datatree evolves
during the member join phase. Notethat the figure showsthe actual
path lengthsto the end-hosts; the stretch isthe ratio of average path
length of the members of a protocol to the average path length of
the membersin the multi-unicast protocol.

Asexplained earlier, thejoin procedurein NI CE aggressively finds
good points of attachment for the membersin the overlay topology,
and the NICE tree converges quicker to a stable value (within 350
seconds of simulated time). In contrast, the Narada protocols grad-
ually improve the mesh quality, and consequently so does the data
path over alonger duration. Its average data path length converges
to a stable value of about 23 hops between 500 and 600 seconds
of the simulated time. The corresponding stretch is about 2.18. In
Narada path lengths improve over time due to addition of “good”
links on the mesh. At the same time, the stress on the tree gradu-
ally increases since the Narada decidesto add or drop overlay links
based purely on the stretch metric.

The cluster-based data dissemination in NICE reduces average
link stress, and in general, for large groups NI CE convergesto trees
with about 25% lower average stress. In this experiment, the NICE
tree had lower stretch than the Narada tree; however, in other ex-
perimentsthe Naradatree had adlightly lower stretch value. Ingen-
eral, comparing theresults from multiple experimentsover different
group sizes, (See Section 5.1.2), we concluded that the data path
lengthsto receivers were similar for both protocols.

In Figures9 and 10, we plot acumulativedistribution of the stress
and path length metricsfor theentire member set (128 members) at a
time after the data paths have converged to a stable operating point.

The distribution of stress on links for the multi-unicast scheme
has a significantly large tail (e.g. links close to the source has a
stress of 127). This should be contrasted with better stress distribu-
tion for both NICE and Narada. Narada uses fewer number of links
on the topology than NICE, sinceit is comparably more aggressive
in adding overlay links with shorter lengths to the mesh topology.
However, due to this emphasis on shorter path lengths, the stress
distribution of thelinkshasaheavier-tail than NI CE. Morethan 25%
of thelinks have a stress of four and higher in Narada, compared to
< 5% in NICE. Thedistribution of the path lengthsfor the two pro-
tocols are comparable.



128 end-hosts join

23 T T T T T T T
m W
0
2
@ 4
X
£ ]
()
j=
© 4
[
>
z ]
128
1.4  Join —— Narada-5 7
————————— NICE
13 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900
Time (in secs)
Figure 7: Averagelink stress (simulation)
Cumulative distribution of link stress after overlay stabilizes
600 T T T T T T
500 - HHHIIOOOGEE 1
v 400 x* X (Unicast truncated |
= N Extends to stress = 127)
= X
S a0l /
54
IS P
> P
Z 200 H ! b
100 —t NICE T
| —--->--- Narada-5
o e Koo Unicast
0 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Link stress

Figure 9: Stressdistribution (simulation)

Failure Recovery and Control Overheads

Toinvestigatethe effect of host failures, we present results from the
second part of our scenario: starting at simulated time 1000 sec-
onds, aset of 16 members|eave the group over a 10 second period.
We repeat this procedure four more timesand no membersleave af -
ter ssimulated time 1400 seconds when the group is reduced to 48
members. When membersleave, both protocols“hea” the datadis-
tribution tree and continue to send data on the partially connected
topology. In Figure 11, we show the fraction of members that cor-
rectly receive the data packets over this duration. Both Narada-5
and NICE have similar performance, and on average, both proto-
colsrestore the data path to al (remaining) receiverswithin 30 sec-
onds. We a so ran the same experiment with the 30 second refresh
period for Narada. The lower refresh period caused significant dis-
ruptions on the tree with periods of over 100 seconds when more
than 60% of the tree did not receive any data. Lastly, we note that
thedatadistributiontree used for NICE istheleast connected topol -
ogy possible; we expect failure recovery results to be much better
if structures with alternate paths are built atop NICE.

In Figure 12, we show the byte-overheads for control traffic at
the accesslinks of the end-hosts. Each dot in the plot representsthe
sum of thecontrol traffic (in Kbps) sent or received by each member
in the group, averaged over 10 second intervals. Thus for each 10
second time dot, there are two dotsin the plot for each (remaining)
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host in the multicast group corresponding to the control overheads
for Narada and NICE. The curves in the plot are the average con-
trol overhead for each protocol. As can be expected, for groups of
size 128, NICE has an order of magnitude lower average overhead,
e.g. at smulation time 1000 seconds, the average control overhead
for NICE is0.97 Kbps versus 62.05 Kbps for Narada. At the same
time instant, Narada-30 (hot shown in the figure) had an average
control overhead of 13.43 Kbps. Note that the NICE control traf-
fic includes all protocol messages, including messages for cluster
formation, cluster splits, merges, layer promotions, and leader elec-
tions.

5.1.2 Aggregate Results

We present a set of aggregate results as the group size is varied.
The purpose of this experiment is to understand the scalability of
the different application-layer multicast protocols. The entire set of
membersjoin in the first 200 seconds, and then we run the simula-
tion for 1800 secondsto allow thetopologiesto stahilize. InTable 1,
we compare the stress on network routersand links, the overlay path
lengthsto group members and the average control traffic overheads
at the network routers. For each metric, we present the both mean
and the standard deviation. Note, that the Narada protocol involves
an aggregate control overhead of O(N?), where N isthesizeof the
group. Therefore, in our simulation setup, we were unable to simu-
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Group Router Stress Link Stress
Size Narada-5 NICE Narada-5 NICE
8 155(1.30) 351(3.30) | 1.19(0.39) 3.24(2.90)
16 1.84(1.28) 234(2.16) | 1.34(0.76) 1.86(1.39)
32 213(2.17) 2.42(2.60) | 1.54(1.03) 1.90(1.82)
64 2.68(3.09) 2.23(2.25) | 1.74(1.53) 1.63(1.39)
128 3.04(4.03) 2.36(2.73) | 206 (2.64) 1.63(1.56)
256 3.63(7.52) 2.31(3.18) | 216(3.02) 1.63(1.63)
512 | 4.09(10.74) 2.34(3.49) | 257(5.02) 1.62(1.54)
1024 - 2.59 (4.45) - 1.77 (1.77)
1560 - 2.83(5.11) - 1.88(1.90)
2048 - 2.92(5.62) - 1.93(1.99)

Figure12: Control bandwidth required at end-host accesslinks
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(simulation)
Path Length Bandwidth Overheads (Kbps)
Narada-5 NICE Narada-30 NICE
25.14(9.49) 12.14(2.29) 0.61 (0.55) 1.54 (1.34)
19.00(7.01) 20.33(6.75) 2.94 (2.81) 0.87 (0.81)
20.42 (6.00) 17.23(5.25) 9.23 (8.95) 1.03 (0.95)
2276 (5.71) 20.62(7.40) | 26.20(28.86) 1.20(1.15)
2155(6.03) 21.61(7.75) | 65.62(92.08) 1.19(1.29)
23.42(6.17) 24.67(7.45) | 96.18(194.00) 1.39(1.76)
24.74(6.00) 22.63(6.78) | 199.96 (55.06) 1.93(3.35)
- 25.83(6.13) - 2.81(7.22)
- 24.99 (6.96) - 3.28 (9.58
- 24.08 (5.36) - 5.18 (18.55)

800 1000 1200 1400 1600 1800 2000

Table1: Data path quality and control overheadsfor varying multicast group sizes (ssmulation)

late Narada with groups of size 1024 or larger since the completion
timefor these simulationswere on the order of aday for asinglerun
of one experiment on a550 MHz Pentium 111 machinewith 4 GB of
RAM.

Naradaand NICE tend to convergeto treeswith similar path lengths.

The stress metric for both network links and routers, however, is
consistently lower for NICE when the group size is large (64 and
greater). It isinteresting to observe the standard deviation of stress
as it changes with increasing group size for the two protocols. The

standard deviationfor stressincreased for Naradafor increasing group

sizes. In contrast, the standard deviation of stressfor NI CE remains
relatively constant; thetopol ogy-based clusteringin NI CE distributes
the data path more evenly among the different links on the underly-
ing links regardless of group size.

The control overhead numbersin the table are different than the
ones in Figure 12; the column in the table is the average control
traffic per network router as opposed to control traffic at an end-
host. Since the control traffic gets aggregated inside the network,
the overhead at routersis significantly higher than the overhead at
an end-host. For these router overheads, we report the values of the
Narada-30 versioninwhichtheroute updatefrequency setto 30 sec-
onds. Recall that the Narada-30 version has poor failure recovery
performance, but is much more efficient (specifically 5 times less
overhead with groups of size 128) than the Narada-5 version. The
HeartBeat messages in NICE were still sent at 5 second intervals.

For the NI CE protocol, the worst case control overheads at mem-
bers increase logarithmically with increasein group size. The con-
trol overheads at routers (shown in Table 1), show a similar trend.

Thus, although we experimented with upto 2048 members in our
simulation study, we believe that our protocol scalesto even larger
groups.

6. WIDE-AREA IMPLEMENTATION

We have implemented the complete NICE protocol and experi-
mented with our implementation over aone-month period, with 32
to 100 member groups distributed across 8 different sites. Our ex-
perimental topology is shown in Figure 13. The number of mem-
bers at each site was varied between 2 and 30 for different experi-
ments. For example, for the 32 member experiment reportedin this
section, we had 2 members each in sitesB, G and H, 4 each at A,
Eand F, 6in C and 8 in D. Unfortunately, experiments with much
larger groups were not feasible on our testbed. However, our im-
plementation results for protocol overheads closely match our sim-
ulation experiments, and we believe our simulations provide area
sonable indication of how the NICE implementation would behave
with larger group sizes.

6.1 Implementation Specifics

We have conducted experimentswith datasourcesat different sites.
Inthis paper, we present arepresentative set of theexperimentswhere
the data stream source is located at site C in Figure 13. In the fig-
ure, we aso indicate the typical direct unicast latency (in millisec-
onds) fromthe site C, to al the other sites. Theseare estimated one-
way latencies obtained using a sequence of applicationlayer (UDP)
probes. Data streamswere sent from the source host at site C, to all
other hosts, using the NICE overlay topology. For our implementa-



A: cs.ucsb.edu E: wam.umd.edu

B: asu.edu F: umbc.edu

C: cs.umd.edu G: poly.edu

33.3 D: glue.umd.edu  H: ecs.umass.edu

Figure13: Internet experiment sitesand direct unicast latencies
from C

tion, we experimented with different HeartBeat rates; in the results
presented in this section, we set the HeartBeat message period to 10
seconds.

In our implementation, we had to estimate the end-to-end latency
between hosts for various protocol operations, including member
joins, leadership changes, etc. We estimated the latency between
two end-hosts using a low-overhead estimator that sent a sequence
of application-layer (UDP) probes. We controlled the number of
probes adaptively using observed variance in the latency estimates.
Further, instead of using the raw latency estimates as the distance
metric, we used a simple binning scheme to map the raw latencies
to asmall set of equivalence classes. Specificaly, two latency esti-
mateswere considered equivalent if they mapped to the sameequiv-
alence class, and this resulted in faster convergence of the overlay
topology. The specific latency ranges for each class were 0-1 ms,
1-5ms, 5-10 ms, 10-20 ms, 20-40 ms, 40-100 ms, 100-200 ms and
greater than 200 ms.

To compute the stretch for end-hostsin the Internet experiments,
we used the ratio of the latency from between the source and a host
along the overlay to the direct unicast latency to that host. In the
wide-area implementation, when a host A receives a data packet
forwarded by member B along theoverlay tree, A immediately sends
back a overlay-hop acknowledgment back to B. B logs the round-
trip latency between itsinitial transmission of the data packet to A
and the receipt of the acknowledgment from A. After the entire
experiment is done, we calculated the overlay round-trip latencies
for each data packet by adding up theindividual overlay-hop laten-
cies available from the logs at each host. We estimated the one-
way overlay latency as half of thisround trip latency. We obtained
the unicast |atencies using our low-overhead estimator immediately
after the overlay experiment terminated. This guaranteed that the
measurements of the overlay latencies and the unicast latencies did
not interfere with each other.

6.2 Implementation Scenarios

The Internet experiment scenarios have two phases: ajoin phase
and a rapid membership change phase. In the join phase, a set of
member hosts randomly join the group from the different sites. The
hosts are then allowed to stabilize into an appropriate overlay de-
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livery tree. After this period, the rapid membership change phase
starts, where host membersrandomly join and leavethe group. The
average member lifetime in the group, in this phase was set to 30
seconds. Likein the simulation studies, all member departures are
ungraceful and allow us to study the worst case protocol behavior.
Finally, we let the remaining set of membersto organizeinto asta-
ble data delivery tree. We present results for three different groups
of size of 32, 64, and 96 members.

Data Path Quality

In Figure 14, we show the cumulative distribution of the stress met-
ric at the group members after the overlay stabilizes at the end of
thejoin phase. For all group sizes, typical membershave unit stress
(74% to 83% of the membersin these experiments). The stress for
the remaining members vary between 3 and 9. These members are
precisely the cluster leaders in the different layers (recall that the
cluster sizelower and upper boundsfor theseexperimentsis3and 9,
respectively). The stress for these members can be reduced further
by using the high-bandwidth datapath enhancements, described in [4].
For larger groups, the number of members with higher stress (i.e.
between 3 and 9 in these experiments) is more, since the number of
clusters (and hence, the number of cluster leaders) is more. How-
ever, asexpected, thisincreaseis only logarithmic in the group size.

In Figure 15, we plot the cumulative distribution of the stretch
metric. Instead of plotting the stretch value for each single host, we
group them by the sites at which there arelocated. For all the mem-
ber hosts at a given site, we plot the mean and the 95% confidence
intervals. Apart from the sites C, D, and E, al the sites have near
unit stretch. However, note that the source of the data streams in
these experiments were located in site C and hosts in the sites C,
D, and E had very low latency paths from the source host. The ac-
tual end-to-end latencies along the overlay pathsto all the sites are
shownin Figure16. For thesitesC, D and E theselatencieswere 3.5
ms, 3.5 ms and 3.0 msrespectively. Therefore, the primary contri-
bution to these latencies are packet processing and overlay forward-
ing on the end-hosts themselves.

In Table 2, we present the mean and the maximum stretch for
the different members, that had direct unicast latency of at least 2
ms from the source (i.e. sites A, B, G and H), for all the differ-
ent sizes. The mean stretch for all these sites are low. However,
in some cases we do see relatively large worst case stretches (e.g.
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in the 96-member experiment there was one member that for which
the stretch of the overlay path was 4.63).

Failure Recovery

Inthissection, we describethe effects of group membership changes
on thedatadelivery tree. To do this, we observe how successful the
overlay isin delivering dataduring changesto the overlay topology.
We measured the number of correctly received packets by different
(remaining) members during the rapid membership change phase of
the experiment, which begins after theinitial member set has stabi-
lized into the appropriate overlay topology. This phase lasts for 15
minutes. Membersjoin and leave the group at random such that the
average lifetime of a member in the group is 30 seconds.

In Figure 17 we plot over time the fraction of members that suc-
cessfully received the different data packets. A total of 30 group
membership changes happened over the duration. In Figure 18 we
plot the cumulative distribution of packet |osses seen by the differ-
ent membersover theentire 15 minuteduration. The maximum num-
ber of packet losses seen by amember was 50 out of 900 (i.e. about
5.6%), and 30% of the membersdid not encounter any packet | osses.
Even under this rapid changesto the group membership, thelargest
continuous duration of packet lossesfor any single host was 34 sec-
onds, while typical members experienced a maximum continuous
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data loss for only two seconds — this was true for al but 4 of the
members. Thesefailure recovery statistics are good enough for use
in most data stream applications deployed over the Internet. Note
that in this experiment, only three individual packets (out of 900)
suffered heavy losses: data packets at times 76 s, 620 s, and 819 s
were not received by 51, 36 and 31 members respectively.

Control Overheads

Finally, we present the control traffic overheads(in Kbps) in Table 2
for the different group sizes. The overheadsinclude control packets
that were sent as well asreceived. We show the average and maxi-
mum control overhead at any member. We observed that the control
traffic at most members lies between 0.2 Kbps to 2.0 Kbps for the
different group sizes. Infact, about 80% of the membersrequireless
than 0.9 Kbpsof control traffic for topology management. Morein-
terestingly, the average control overheads and the distributions do
not change significantly asthe group sizeisvaried. Theworst case
control overhead is aso fairly low (less than 3 Kbps).



Group Stress Stretch
Size | Mean Max. | Mean Max. | Mean Max.
32 1.85 8.0 108 161 | 084 2.34
64 173 8.0 114 167 | 0.77 2.70
96 1.86 9.0 104 463 | 0.73 2.65

Table 2: Average and maximum values of of the different met-
ricsfor different group sizes(testbed)

7. RELATED WORK

A number of other projects have explored implementing multi-
cast at the application layer. They can be classified into two broad
categories: mesh-first (Narada[10], Gossamer[7]) and tree-first pro-
tocols(Yoid [12], ALMI [15], Host-Multicast [22]). Yoid and Host-
Multicast defines a distributed tree building protocol between the
end-hosts, while ALMI uses acentralized algorithmto createamin-
imum spanning tree rooted at a designated single source of multi-
cast data distribution. The Overcast protocol [14] organizes a set of
proxies (called Overcast nodes) into a distribution tree rooted at a
central sourcefor singlesourcemulticast. A distributed tree-building
protocol is used to create this source specific tree, in amanner sim-
ilar to Yoid. RMX [8] provides support for reliable multicast data
delivery to end-hosts using a set of similar proxies, called Reliable
Multicast proXies. Application end-hosts are configured to affiliate
themselveswith the nearest RM X. Thearchitecture assumesthe ex-
istence of an overlay construction protocol, using which these prox-
ies organize themselvesinto an appropriate datadelivery path. TCP
isused to providereliable communication between each pair of peer
proxies on the overlay.

Someother recent projects(Chord [21], Content Addressable Net-
works(CAN) [17], Tapestry [23] and Pastry [19]) haveal so addressed
the scalability issue in creating application layer overlays, and are
therefore, closely related to our work. CAN definesavirtual d-dimen-
sional Cartesian coordinate space, and each overlay host “owns’ a
part of this space. In [18], the authors have leveraged the scalable
structure of CAN to define an application layer multicast scheme, in
which hosts maintain O(d) state and the path lengthsare O(d N /<)
application level hops, where N is the number of hosts in the net-
work. Pastry [19] is a self-organizing overlay network of nodes,
where logical peer relationships on the overlay are based on match-
ing prefixes of the node identifiers. Scribe [6] isalarge-scale event
notification infrastructure that leveragesthe Pastry systemto create
groups and build efficient application layer multicast paths to the
group members for dissemination of events. Being based on Pas-
try, it has similar overlay properties, namely (2° — 1) log,, N state
at members, and O(log,» V') application level hops between mem-
bers®. Bayeux [24] inanother architecturefor applicationlayer mul-
ticast, where the end-hosts are organized into a hierarchy as defined
by the Tapestry overlay location and routing system [23]. A level
of the hierarchy is defined by a set of hosts that share a common
suffix in their host IDs. Such a technique was proposed by Plax-
ton et.al. [16] for locating and routing to named objects in a net-
work. Therefore, hosts in Bayeux maintain O(blog, N) state and
end-to-end overlay paths have O(log, N') application level hops.
Asdiscussed in Section 2.3, our proposed NICE protocol incurs an
amortized O(k) state at membersand the end-to-end paths between
members have O(log,, V') application level hops. Like Pastry and
Tapestry, NICE also chooses overlay peers based on network local -
ity which leads to low stretch end-to-end paths.

We summarize the above as follows: For both NICE and CAN-

4 isasmall constant.

Control overheads (Kbps)  myticast, members maintain constant state for other members, and

consequently exchange aconstant amount of periodic refreshesmes-
sages. This overhead is logarithmic for Scribe and Bayeux. The

overlay pathsfor NICE, Scribe, and Bayeux have alogarithmic num-
ber of application level hops, and path lengths in CAN-multicast

asymptotically havealarger number of application level hops. Both

NICE and CAN-multicast use a single well-known host (the RP, in

our nomenclature) to bootstrap thejoin procedure of members. The

join procedure, therefore, incurs a higher overhead at the RP and

the higher layers of the hierarchy than the lower layers. Scribe and

Bayeux assume members are able find different “ nearby” members

ontheoverlay through out-of-band mechanisms, from which to boot-
strap thejoin procedure. Using this assumption, the join overheads

for a large number of joining members can be amortized over the

different such “nearby” bootstrap membersin these schemes.

8. CONCLUSIONS

In this paper, we have presented a new protocol for application-
layer multicast. Our main contribution is an extremely low over-
head hierarchical control structure over which different data distri-
bution paths can bebuilt. Our resultsshow that it ispossibleto build
and maintain application-layer multicast treeswith very little over-
head. While the focus of this paper has been low-bandwidth data
stream applications, our scheme is generalizable to different appli-
cations by appropriately choosing data paths and metrics used to
construct the overlays. We believe that the results of this paper are
asignificant first step towards constructing large wide-area applica-
tions over application-layer multicast.
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