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Abstract— This paper contains a detailed description of the congestion
control algorithm of TRAM, a tree-based reliable multicast protocol. This
algorithm takes advantage of regular acknowledgements from the receivers
that propagate back to the sender via the repair tree. This scalable feedback
mechanism is used to collect receiver credits. Complementing the windowing
mechanism, packet transmission is smoothed by using a data rate commen-
surate with the window size. Additional details, such as how to prune slow
receivers, and how to implement the rate scheduler on non-real-time systems
are also discussed. The performance of the congestion control algorithm is
then evaluated in extended LANs, and wide area networks. The fairness of
bandwidth-sharing with other (TCP) traffic is also evaluated.

I. Introduction

The design of a congestion control mechanism for a multicast
transport protocol is quite complex.

Effective congestion control relies on accurate and timely feed-
back on the prevalent network condition. With more than one
receiver, multicast first presents a challenge in how to economi-
cally, accurately and speedily collect feedback information.

Since a badly designed (or malfunctioning) algorithm used by
multicast can cause more damage to the network during conges-
tion, it is very important for multicast congestion control to be
very robust, and to demonstrate it will share network resources
fairly with other traffic. Yet, what constitutes a reasonable policy
for allocating congested resources that are shared by both unicast
and multicast traffic is a hard question.

In this paper, we report our experiences in designing a conges-
tion control1 algorithm for a tree-based reliable multicast trans-
port protocol. Such a protocol uses a repair tree to localize re-
transmission of lost packets. We exploit the unique property
offered by this repair tree - regular acknowledgements flowing
from every receiver to the sender, and the feedback informa-
tion being aggregated by the interior nodes of the repair tree -
thus ensuring economically and accurately collecting feedback
information. We leverage on this infrastructure to implement a
primarily window-based congestion control algorithm because it
has been demonstrated to be the most robust in our experiments.
To compensate for the lack of timely feedback,2 the sender uses a
rate-based traffic shaper to smooth the transmission. One of the
key contributions of this paper is the study of how to dynamically
adjust the sender’s rate based on the congestion window states.
We also report our implementation experiences and experimental
results.

1Actually, we prefer the term flow control, as the control is on-going whether
there is congestion or not; and irrespective of whether congestion is in the network
or at a particular end host, the same control is used.

2Multicast acknowledgements are sent once for a window of packets.

II. Previous Work

By far the majority of traffic on the Internet is transported by
TCP. The TCP congestion control algorithm [1] has also been a
hot topic of research in the literature for many years. In setting
a guideline for requirements of multicast congestion control, the
Internet Engineering Task Force (IETF) required any standard
multicast congestion control to be TCP-friendly [2].

The TCP congestion control algorithm is a distributed control
algorithm. Each sender uses the loss of packets as a negative
feedback signal. Upon congestion indication, the controller uses
an additive increase and multiplicative decrease algorithm [3] to
react to congestion (or the lack thereof) as well as to achieve fair
sharing of congested resources with other flows.

Various researchers studied models of TCP and derived a re-
lation between the throughput of a TCP flow as a function of
the packet loss rate and the roundtrip time [4], [5]. This became
known as the TCP formula. The notion of TCP-friendliness,
therefore, can be loosely described as the behavior of a conges-
tion control algorithm that yields the same throughput (given a
loss rate and round trip time) as the TCP formula.

Several efforts were undertaken to design a TCP-friendly con-
gestion control algorithm for multicast. These efforts can be
categorized as follows:
• TCP emulation
• TCP formula-based rate control

A recent TCP emulation algorithm is reported in [6]. The idea
is quite simple. A representative receiver is selected from the
multicast group. This receiver and the sender then run a TCP-
like algorithm to control the transmission of packets. As far as the
sender and the representative are concerned, they are essentially
the same as the sender and receiver of a unicast TCP flow. The
rest of the multicast group is merely listening in. The main
challenge of this approach is to select the right representative,
which should be one that is using the most congested resources
in the network. Arguably, if the point of congestion moves as the
multicast session goes on, then it is continuously necessary for
a new representative to be selected and the control algorithm to
be moved to the new representative.

Earlier, [7] also explored how to emulate the TCP windowing
mechanism. Instead of relying on feedback from a representative
as in [6], the sender in [7] reacts to receiver feedback signals
probabilistically. In other words, each receiver would be acting
as the representative some of the time, probabilistically speaking.
It was shown that this approach can achieve a relaxed notion of
fairness. We found the discussion of relative TCP-friendliness
very interesting. However, without using a representative, or a

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



feedback tree, their scheme does not seem easily scalable.
Another TCP emulation protocol is MTCP [8] which uses a

feedback tree. Their approach is based on a TCP-like mechanism
to adjust the congestion window at each receiver. Further, each
receiver estimates the number of packets in-flight from the sender.
These two pieces of information are aggregated (the minimum
value of the congestion window and the maximum value of the
in-flight packets) and reported back to the sender, and the sender
uses the difference of these two numbers to limit the number of
new packets it sends. This approach seems rather complicated.

The TCP formula-based control algorithm takes a different
approach than doing incremental adjustments as in a TCP con-
troller. Instead, the controller collects information about packet
loss rates and roundtrip times in the background. As soon as
these measurements are considered credible, they are plugged
into the TCP formula. The derived throughput is then used as
the rate to regulate transmission. So this approach necessarily
relies on a rate-based control (in contrast to the window-based
control used by TCP). The challenge for this approach is how to
measure the packet loss rate and roundtrip time. It is proposed
that the right packet loss rate and roundtrip time to use are those
observed by a representative receiver that is behind the most con-
gested resources: in other words, the same representative as the
algorithm in [6]. Again, the challenge with this algorithm is how
to dynamically keep focusing on the right representative so as
to collect the right packet loss rate and roundtrip time informa-
tion. The studies of this approach have been reported by several
researchers, for example see [9], [10] and [11].

An important theoretical discussion of the different mecha-
nisms for congestion control (rate or window), and the different
notions of fairness of resource allocation can be found in [12].
In the same paper, Golestani also describes an interesting algo-
rithm for doing window-based flow control. In TCP, the window
is controlled at the sender, based on feedback from the receiver.
Golestani argues that the control of the window can be moved
to the receiver side without changing the effectiveness of the
control, in the unicast case. In the multicast case, however, he
demonstrates that there is an important difference between im-
plementing the window at the receiver side versus the sender
side. Effectively, implementing the window at the receiver side
achieves the same behavior as if the sender is controlled by the
worst-case representative as discussed above, whereas imple-
menting the window at the sender side would be equivalent to
using the worst packet lost rate and the worst roundtrip time. In
the latter case, the achieved throughput would be much worse
than the former case when the worst packet losses and worst
roundtrip time do not occur along the same path to a single rep-
resentative.

III. Our Algorithm

A. Rationale

The congestion control algorithm described in this paper has
been implemented as part of TRAM [13], a tree-based reliable
multicast transport protocol.

TRAM adopts a primarily window-based congestion control
scheme. A window is simply a range in the packet sequence
space. We use the term left edge and right edge to refer to the

lower and higher ends of the window. The sender is allowed to
send only those packets in the current window. As packets are
received and acknowledged by receivers, the left and right edges
of the window are both advanced. This is why a window-based
control is also known as a sliding window control. The move-
ment of the left edge is governed by the acknowledgements (of
consecutively received packets); whereas the movement of the
right edge is governed by the window size. If the window size is
constant, then the left and right edges will be maintaining a con-
stant distance. In a window-based congestion control scheme,
the window size is dynamically adjusted according to the prevail-
ing network (congestion) conditions. When the sender finishes
sending the packet at the window’s right edge before an acknowl-
edgement arrives to slide the window, the sender is temporarily
held back from sending more packets. We call this condition
window closed.

TCP’s congestion control algorithm is a well-known window-
based algorithm. The window-based algorithm in TRAM is dif-
ferent in the following ways.

In a unicast protocol (such as TCP), there is no significant dif-
ference whether the sender or the receiver adjusts the window
size. In TCP, the sender controls the window size. In a multi-
cast protocol, as explained by [12], it is best to let the receivers
maintain the window size. This allows each receiver to maintain
a separate window size depending on the network condition on
the path from the sender to that receiver. Each receiver tells the
sender its "right edge" of the window (piggybacked on acknowl-
edgement packets). The sender then takes the smallest value (of
"right edges" from all receivers) and uses that as the right edge
of its window. This is the first difference.

In a unicast protocol, it is acceptable to send an acknowledge-
ment for each data packet. For TCP, an acknowledgement is sent
for every two data packets (usually). Such frequent acknowl-
edgements allow the sender and receiver to be closely synchro-
nized with the network conditions, and slide the right edge of the
window very smoothly (by one or two packets at a time). When
the control is operating perfectly, the window is barely open and
each new acknowledgement allows and triggers the sender to
send a new packet. This is described as self clocking.

In a multicast scenario, the overhead of acknowledgement is
multiplied by the number of receivers. Many multicast protocols
([14], [15]) try to avoid regular acknowledgements altogether.
The more conservative (from a reliability point of view) proto-
cols ([13], [16]) implement regular acknowledgements using a
hierarchical tree of repair servers to distribute the processing of
the acknowledgements. To limit overhead, each receiver only
sends an acknowledgement once per acknowledgement window
(typically a relatively large number, e.g., 32 or 64). This means:
• Since the congestion window3 size must not be smaller than the
acknowledgement window size, we are dealing with relatively
large congestion windows.
• The large acknowledgement window means the sender is less
in synch with the network conditions.
• The movement of the right edge of the window is less smooth
(compared to TCP).
Since the sender tends to be allowed to send multiple packets

3We now use the term congestion window to differentiate it from acknowl-
edgement window.
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when the window is open, the self clocking property is likely
lost.

For this reason, TRAM also implements a sender data rate con-
trol, as a complement to the window-based control. The sender
monitors the prevailing data rate and adjusts it to keep the con-
gestion window open. This data rate is then used to schedule
packet transmission. Even if the sender is allowed to send many
packets, they are not sent back-to-back, but rather smoothly ac-
cording to the data rate. Such a packet transmission scheduler
restores the "self clocking" mechanism that is lost. See [17] for
a discussion on the implementation of the scheduling algorithm.

The data rate monitoring achieves another purpose. There are
good reasons for the sender to keep a minimum (Rmin) data
rate. Multicast is group communication. If one receiver is far
slower than the others, it is sometimes right to remove the slow
receiver from the group and let the rest of the group achieve a
higher throughput. One simple way to make this tradeoff is to
let the multicast session be configured with a minimum data rate
(Rmin). Any receiver that cannot sustain this minimum rate is
removed. See [18] for a expanded discussion of this topic.

There are also good reasons for setting a maximum data rate
(Rmax). Many multicast applications care more about network
efficiency than throughput. There is often an application-specific
maximum desired rate. Setting a maximum data rate not only
helps to limit the bandwidth usage by the multicast session, it
also serves to limit the instantaneous rate the scheduler will use to
send packets. Although TRAM’s rate adjustment algorithms help
adapt the data rate to a suitable value, a conservative maximum
data rate helps TRAM in this respect.

Finally, scheduling packet transmission using a data rate also
ensures the retransmissions are transmitted smoothly. Due to
the large window used by a multicast transport, sometimes many
packets need to be retransmitted, and it is important to control
the burstiness of the retransmission traffic.

B. Window Adjustments

Under normal operations, each receiver sends one acknowl-
edgement packet to its parent for every Wa data packets received,
where Wa is known as the size of the acknowledgement window.

Each receiver maintains a congestion window, Wc. Initially,

Wc = 2Wa

The value of Wc is dynamically adjusted, once every Wa pack-
ets. The congestion window size for the ith acknowledgement
window is denoted Wc(i).

In order to be TCP-friendly, the adjustment follows the ad-
ditive increase, multiplicative decrease rule [3]. If there is no
congestion in the ith acknowledgement window then,

Wc(i + 1) = Wc(i) + 2

On the other hand, if congestion was detected during the ith

acknowledgement window, then,

Wc(i + 1) = 0.75Wc(i)

The value of 2 and 0.75 are the additive and multiplicative com-
ponents of the algorithm. The value of Wc is always bounded by

the following range:

Wa ≤ Wc ≤ MWa

where M is a configuration parameter called the congestion win-
dow multiplier. The value of M is 2 or larger.4

The definition of congestion during an acknowledgement win-
dow is when there are equal or more lost packets in the current
window compared to the last, and the loss level is at least LthWa,
where the loss threshold is Lth = 0.25. The motivation for using
a loss threshold greater than 0 is to not let occasional and random
losses affect the congestion window.

The receiver-maintained congestion window can be thought
of as a credit system. Each receiver issues credit to the sender
based on the network (and local) conditions. In good times, you
want to keep extending the credit. It is good practice, however,
to put some upper limit on Wc, for the same reason you would
on a credit system. If Wc is too large when an abrupt congestion
condition occurs, the multicast group is exposed to a vast amount
of repair in the aftermath. In TRAM, the maximum value of Wc

is set to 5Wa.

C. Feedback and Aggregation

Each time a receiver sends an acknowledgement, it includes
the following values:
• The highest consecutively received packet sequence number,
Hr

• The highest allowed sequence number, Ha

This is essentially a representation of the receiver’s congestion
window.

TRAM uses a repair tree to localize repairs. This repair tree is
also used to aggregate feedback from the receivers to the sender.
At each level in the tree, the receiver sends an acknowledgement
containing its own Hr, but the minimum Ha based on all the
values of Ha from the subtree below it. In other words, Hr

propagates up one level only (for the purpose of reliability) but
Ha gets aggregated and propagates all the way to the sender
(the root of the tree). Therefore, the sender’s value of Ha is the
minimum of all the values of Ha in the whole tree.

Ideally, this minimization is done at the same time over the
whole tree. In practice, however, the minimization is done in a
distributed fashion and over a period of time depending on how
each receiver (including the repair heads) schedules its acknowl-
edgements.

To expedite the sliding of the congestion window, especially
in the case when the window is held back by one (or a few) very
slow receiver, sometimes acknowledgements can be triggered
before their scheduled time. Each time the value Ha is updated
(normally after receipt of a retransmission or a new acknowl-
edgement packet from a child) to H ′

a, the following condition is
checked:

(H ′
a − Ha) >

Wa

2
If true, an acknowledgement packet is sent immediately.

The above condition is a compromise between optimizing the
speed of updating the sender’s window and the potential overhead
of additional acknowledgement packets.

4In TRAM, the default value of M is set to 5
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D. Rate Adjustments

The scheduler transmits packets by using the current data rate,
R. The sender adjusts R based on monitoring the session.

Rate adjustment is different in the slow-start (at the beginning
of the session) versus the steady-state phases.

In the slow-start phase, the goal is to start from the minimum
rate Rmin and quickly find a suitable rate to use. A reasonable
approach would be to set

∆R =
Rmax − Rmin

n

and increase the rate by ∆R after each Wa packets sent until the
end of the slow-start. Here n is an integer that reflects the tradeoff
between the speed of convergence and potential overshoot, as
discussed in [3]. The problem with this approach is when Rmax

is misconfigured (to be exceptionally high), then this initial rate
increase may overshoot too much.

To guard against inappropriately configured Rmax, we choose
to make ∆R independent of Rmax, but adapt gradually from
a small minimum value. Initially, ∆R is set to a constant,
2500B/sec. This value also serves as the minimum value of
∆R (denoted ∆Rmin) throughout the session.

During slow-start, the following rate adjustments are made
after each packet transmission:

R = R + ∆R

∆R = ∆R + r

r = 1KB/sec

The value of R is kept no higher than Rmax, and the value of
∆R is kept no higher than Rmax−Rmin

4 at all times during the
session. These successive increases are continued until the end
of slow-start.

The end of slow-start is reached when one of the following
conditions is true:
• R reaches maximum data rate Rmax;
• a congestion report is received for the first time;
• the window is closed for the first time.
At this point, we enter the steady-state phase.

In the steady state phase, the goal is to transmit a sequence
of packets in the queue (as window opens) in a steady rate com-
mensurate with the current window size, and to help the window
size converge to a steady operating range. The algorithm for rate
adjustment depends on monitoring the following parameters:
• the achieved data rate (throughput) during the recent past (de-
noted R);
• the average congestion window size5 during the last Wa pack-
ets, (denoted Wc);
• whether the window is open or not.

The value of R is calculated once per Wa packets. Let y be
the total amount of data transmitted in the last T seconds, then

R =
y

T

where T (5 seconds) is a constant, known as the time window.

5as seen by the sender

Let N denote the sequence number of the next packet to send,
and Ha(N) be the highest allowed sequence number when packet
N is sent. For each Wa packets, we compute

Wc(i) =

∑iWa

j=(i−1)Wa+1(Ha(j) − j)

Wa

This is the sender’s estimate of the average window size for the
ith acknowledgement window of packets.

After every Wa packets, the sender resets the current data rate
R and ∆R based on the above monitored state:
1. If the window is open, and opening wider (i.e. Wc(i) >
Wc(i − 1)), then6

R = R + ∆R

2. For all the other cases7,

R = R

3. The value of ∆R is reset to

∆R = max(0.15 ∗ R, ∆Rmin)

Note, the value of R is adjusted once per Wa packets. Dur-
ing the course of transmitting these Wa packets, the sender can
also monitor the direction in which the window is changing. If
the window is gradually closing, it helps to further smooth out
the transmission by taking that into account. For this purpose,
the actual rate (call it Rs) used for scheduling transmission is
modified (before its use) as:

Rs =
{

Rmin + w(R − Rmin)/Wa if w < Wa

R if w >= Wa

where w is the sender estimated window size at the moment, i.e.
(Ha − N).

To summarize, the above rate adjustment algorithms might
seem complicated, but they are designed to be adaptive and ro-
bust. There are three algorithms:
• slow start: Try to quickly reach a rate in the right ball-park.
The strategy is to increase the rate exponentially (starting from
the minimum) until the onset of congestion.
• window-based rate adjustment: Once per acknowledgement
window of packets, reset the rate to the monitored average rate
achieved in the recent past, with one exception. When the aver-
age congestion window size is growing wider, it signals a likely
climate for higher possible throughput. In this case, the rate is
set to the average achieved rate plus an increment.
• fine tuning: Before using the rate for scheduling each packet,
a separate scheduling rate is derived and used if the congestion
window is observed to be close to shutting down.
The single goal is to compute a rate that is commensurate with the
current congestion window, and use it to smooth the transmission
of successive packets. These algorithms are rather similar to how
a production line is operated based on inventory, or how a budget
is managed based on the level of consumption by an organization.

6In our original design, the new rate is derived from the current rate rather then
the current average rate, namely R = R+∆R. This achieved higher throughput
performance with a small number of receivers. However, we noticed the use of R
produced a much smoother rate of transmission in the steady state, and resulted
in better performance as the number of receivers increased. This point will be
elaborated on further in the section where we discuss experimental results.

7In an earlier design, we chose to set R to a fraction of R after the window
closes. We notice, however, since we use a slower scheduling rate as the window
draws to a close, the average rate R is already reduced sufficiently.
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E. Packet Scheduling

Packets are placed on either the retransmit queue or the data
queue. A scheduler takes packets off the queues and sends them.
Packets are first taken from the retransmit queue.

The scheduler tries to smooth the transmission of packets
based on the data rate described in the last section. Retrans-
mitted packets are sent at the open-window rate. Data packets
are sent at the open-window rate if the window is open; otherwise
they are sent at a rate of 1 packet per second.8

Given a data rate, transmission scheduling is implemented by
calling a sleep(tsleep) function after each packet transmission.
The input argument, tsleep, is the sleep time, computed as

tsleep =
P

Rs

where P is the packet size and Rs is the scheduling rate as defined
in the last section.

There are two interesting details related to the granularity of
the sleep() function.

E.1 Sleep time is an integer

Unless a real time platform is used, the sleep() function can
handle sleep times of only a moderate granularity. On the plat-
form we experimented with, tsleep is an integer in milliseconds.
The above computation of tsleep is rounded down to be an integer.

When the current data rate, Rs, is sufficiently high relative to
the packet size, the resultant sleep time tsleep becomes zero (after
rounding). This means packets will be transmitted back-to-back
without gaps, and hence yield an effective data rate potentially
higher than that prescribed.

Given the granularity of one millisecond and a packet size of
P , the data rate must be in the following range

Rs ≤ 1000P

for the scheduling to be accurate. For example, for packet size
of 1500 bytes, Rs should be no more than 1.5 MB/sec.

This problem can be alleviated to some extent by monitoring
the amount by which the actual data throughput exceeds the pre-
scribed rate and compensating for that, provided the prescribed
rate does not keep changing.

E.2 Oversleeping

Another problem with the sleep() function is that it may sleep
more than tsleep. On the platform we experimented with, the
actual time slept is tsleep rounded up to the next multiple of ten
milliseconds. For example, sleep(12) would result in a pause of
20 milliseconds, and sleep(23) would result in 30 milliseconds,
and so forth.

Oversleeping causes the resultant data throughput to be lower9

than the prescribed data rate, Rs. This problem is described in
detail in [17] and a number of algorithms to compensate for
oversleeping have been suggested.

8In this sense, the 1 packet per second rate is the instantaneous minimum data
rate for a TRAM multicast session. The configuration parameter, Rmin, is used
as a threshold; when the instantaneous rate becomes consistently lower than this
threshold, slow receivers are pruned to restore a reasonable session rate.

9sometimes significantly lower

F. Pruning

While the maximum data rate, Rmax, is used to limit burstiness
(in the worst case), the minimum data rate, Rmin is used to
guarantee some level of data throughput. When there is a large
receiver group, it is increasingly likely that some receiver is much
slower than others and thus slowing down the data rate of the
whole group of receivers. We use Rmin as a yardstick to select
the receivers that are too slow and prune them.10

Isolating those receivers that ought to be pruned is not easy.
Since all receivers receive at the same rate at which the sender is
sending, it is not possible to determine which receiver(s) caused
the sender to slow down by measuring each receiver’s receive
rate (since they would all be the same). This is how pruning is
tied into congestion control. The congestion control mechanism
slows down the data throughput of the multicast session to be-
low Rmin, when there are receivers who cannot sustain a receive
rate of Rmin. When the sender detects the session throughput is
below Rmin, all the repair heads in TRAM collectively identify
those receivers that caused this condition - not by measuring each
receiver’s receive rate, but by noticing those receivers with higher
loss rates and which have fallen behind in sending acknowledge-
ments. To avoid pruning borderline receivers by mistake, the
repair heads use a distributed algorithm to determine the slowest
receivers and prune them one at a time until the congestion con-
trol algorithm restores the session data rate above Rmin again.
[18] contains a detailed study of this topic.

IV. Experiments

In this section, we describe a set of experiments we used to
test the performance of TRAM and hence its congestion control
algorithm. We are interested in how fast it runs when all the hosts
are on the same LAN, and how it scales in this environment. We
then study how bandwidth limitations between the receivers and
sender affect the performance. Finally, we try to characterize
how TRAM and TCP traffic share limited network bandwidth.

All these experiments were run using a Java implementation
of TRAM that is publicly available [19].

Table 1 contains the values of some of the TRAM configura-
tion parameters used in our experiments, unless noted explicitly
later. The acknowledgement window (Wa) was set to 64 which
yielded slightly better performance.11 The congestion window
multiplier, M , was set to 5 (default). The minimum data rate
(Rmin) is deliberately set to a very low value (1KB/sec) so that
there will be no pruning. The maximum data rate (Rmax) is
deliberately set to a very high value (1.5MB/sec) so that the
maximum speed of TRAM can be tested. Each repair head is
limited to have no more than 5 members in its repair group. A
relatively small Maximum Members helps ensure that no repair
head becomes a bottleneck.

A. The Effect of Increasing Population Size

The goal of our first experiment is to see how fast TRAM can
run and how well it scales when the number of receivers increases.

10When a receiver is pruned, it means that that receiver no longer gets reliability
service from the transport. That receiver may still listen to the multicast.

11The default value of Wa in TRAM is 32.
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TABLE I

Performance-sensitive configuration parameters

parameter default value

ACK Window 64 packets
Congestion Window Multiplier 5
Minimum Data Rate 1 KBytes/sec
Maximum Data Rate 1.5 MBytes/sec
Maximum Members per Repair Head 5

Fig. 1. LAN Measurements

This is done in a high-speed LAN environment where the net-
work is not the bottleneck. All the measurements reported in this
section were performed at the Rochester Institute of Technology.
The test programs are publicly available[20].

A sender sends (using TRAM) 100,000 packets of size 1400
bytes to n receivers. The same test is repeated for increasing
numbers of receivers, n. At the end of each test, the number of
receivers still alive is verified to be the same as the number that
started the test. The throughput is plotted against the number of
receivers in Figure 1.

There are two curves in Figure 1. In one case, the rate adjust-
ment algorithm (when the congestion window is opening wider)
is based on using the average rate measured for every Wa, as
described in section 3.4. The other case is based on an ear-
lier design where the current rate is directly incremented. The
earlier design actually performed better for smaller numbers of
receivers. However, a detailed examination of the dynamics of
the sessions revealed that the use of the average rate produced
much smoother transmission. It is also more robust as we change
other configuration parameters, such as the congestion window
multiplier. Furthermore, it competes more fairly with other traf-
fic. For these reasons, we decided to give up a little performance
and adopted the algorithm based on using average rates for ad-
justments.

The throughput remained quite high up to the highest number
of receivers available in the testbed, which is around 120. The
testbed is not a controlled environment, so there is some variabil-
ity in the results, especially for higher throughput values. But
this test gives us a rough idea of how fast the protocol can run
and how it scales up.

Fig. 2. Dummynet test environment

B. The Effect of Limited Network Bandwidth

For various reasons, controlled multicast tests in a wide-area
network are difficult to set up. So we chose to use Dummynet[21]
to emulate a network with limited bandwidth. We found Dum-
mynet a great alternative to simulation, because it allowed us to
exercise a real implementation of our algorithm.

The measurement network is as shown in Figure 2. Dummynet
runs on a PC. We verified that the Dummynet (PC) can easily em-
ulate bandwidth up to 400 KB/sec.12 The Dummynet PC comes
with two Ethernet interfaces. One interface was connected (via
a hub) to a dedicated UNIX machine, X; and the other inter-
face was connected (via a hub) to the campus highspeed LAN
through which we can reach many dedicated UNIX machines
(Y1, Y2, ..., Yn). Although this is not a completely isolated test
environment due to the campus LAN, we carefully chose to run
our experiments during times there was little or no traffic on the
campus LAN.

In these experiments, the multicast sender is always running
on machine X, and the one receiver each on Yi. The only traffic
going through Dummynet is a single multicast session. We tested
a multicast session with 1, 7 and 14 receivers. For each case, the
bandwidth emulated by Dummynet is varied from 50KB/sec up
to 400KB/sec. The results are shown in Figure 3.

At low bandwidths, the multicast throughput matches quite
closely with the available bandwidth, independent of the number
of receivers.

As the number of receivers increases, TRAM’s achieved
throughput begins to fall short of the available bandwidth. Since
all the receiver machines are connected to a 10Mbit/sec Ethernet,
one explanation is the effect of collisions. When we checked the
collision counters at the network interfaces of these machines,
we did notice a significant amount of collisions.

C. TCP-friendliness

In this section, we evaluate how TRAM shares network band-
width with TCP traffic. We did not try to study fairness at the

12We did not try to find out what the maximum bandwidth this PC running
Dummynet could emulate.
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Fig. 3. TRAM performance in a network of limited bandwidth

packet-by-packet scheduling level, nor are we advocating a par-
ticular metric for comparing traffic fairness. Our goal is to study
traffic sharing at a more macroscopic level where it is only impor-
tant to compare throughput achieved for sending a fixed amount
of data in a session.

For this study, we felt it adequate to run each TCP session as
a file transfer using FTP. We first run a set of tests to see how
multiple simultaneous FTP sessions share a given configured
Dummynet bandwidth (in this case 400KB/sec). We increase
the simultaneous FTP sessions from 1 to 7. The result is shown
in the second and third columns of Table 2. The second column
shows the average throughput for each FTP session, whereas the
third column gives the range of values. It is clear that these FTP
sessions were able to use up all the limited bandwidth, and share
them roughly equally.

When comparing TRAM’s throughput and TCP’s throughput
when they are running simultaneously, we took the following
strategy:
1. First measure the throughput of FTP sessions (each transfer-
ring 10MB of data), in the middle of a TRAM session (transfer-
ring 30MB of data).
2. Then measure the throughput of a TRAM session (transfer-
ring 30MB of data), in the middle of a set of simultaneous FTP
sessions (transferring 50MB of data).
The first set of tests tell us how TCP shares bandwidth with a
background TRAM session; and the second set of tests tell us
how TRAM shares bandwidth with a background set of FTP
sessions. Unless otherwise specified, all TRAM sessions below
have 7 receivers.

The FTP sessions’ throughputs (with TRAM running in the
background) are shown in columns 4 and 5 of Table 2. The
TRAM sessions’throughputs (with FTP sessions13 running in the
background) are shown in column 6 of Table 2. All throughput
numbers are in KB/sec. Again, the FTP sessions’ throughput are
reported as an average as well as a range.

These results show TRAM to be less friendly than TCP. When
there are only a small number of FTP sessions, they are able
to grab the bandwidth that TRAM is not using (even by itself,
TRAM does not use up all the bandwidth). As we increase the

13These FTP sessions are started roughly simultaneously.

TABLE II

Performance of FTP sessions with or without TRAM (M=5) in the

background

Num
of
FTPs

FTP thruput With-
out TRAM

FTP thruput With
TRAM

TRAM
thruput
with
FTP

1 374 (374, 374) 185 (185, 185) 179
2 188 (188, 188) 99 (99, 100) 158
3 126 (126, 127) 76 (74, 78) 149
4 99 (95, 105) 65 (62, 67) 134
5 78 (75, 81) 48 (47, 48) 119
6 65 (62, 71) 44 (42, 45) 112
7 56 (53, 59) 41 (38, 46) 103

TABLE III

Performance of FTP sessions with or without TRAM (M=2) in the

background

Num
of
FTPs

FTP thruput With
TRAM in back-
ground

TRAM thruput
with FTP in
background

1 174 (174, 174) 182
2 113 (113, 113) 122
3 86 (81, 90) 96
4 65 (65, 67) 70
5 60 (57, 61) 65
6 53 (50, 58) 61
7 44 (43, 47) 60

number of simultaneous FTP sessions, TRAM gives up some of
its bandwidth to the FTP sessions but tends to use a bigger share
than the FTP sessions (which do share the rest of the bandwidth
more or less fairly).

This is not entirely surprising. The basic part of congestion
control that tries to be friendly with TCP is the congestion win-
dow adjustment algorithm. There are several parameters in this
algorithm that are not the same as TCP. For example, the addi-
tive increase value is 2; and the multiplicative decrease fraction
is 0.75. Perhaps more significantly, for ACK efficiency reasons,
TRAM uses much bigger congestion windows. The configurable
parameter, congestion window multiplier (M ) can be used to
control how wide the congestion window can open. To optimize
TRAM’s own performance, M ’s default value is set to 5. Re-
ducing the value of M should help make TRAM more friendly
to other traffic.

We rerun the above tests setting M to 2. The results are shown
in Table 3. It confirms our theory.

TRAM also allows users to control its bandwidth usage by
setting the Maximum Data Rate to an appropriate value.

Finally, we captured some data to show the progress of the
TRAM sessions during the above experiments. We wanted to
ensure that TRAM was making smooth adjustments in the face
of competing traffic (FTP sessions). These data are plotted as the
cumulative data transferred against time for each TRAM session.

Figure 4 shows TRAM’s progress when different numbers of
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Fig. 4. TRAM’s progress with FTP sessions in the background

Fig. 5. TRAM’s progress in the background, with FTP sessions starting in the
middle

FTP sessions are running in the background. The 8 curves corre-
spond to the cases with 0 to 7 simultaneous FTP sessions running
in the background. As the number of background FTP sessions
increases, the progress curve results in a more gradual slope (indi-
cating slower rate of data transfer). These curves are as expected
from the results in Table 2 and 3. The relative smoothness of the
curves indicates that the TRAM session ran steadily with varying
amounts of competing traffic.

Figure 5 shows TRAM’s progress when it is running in the
background, and a number of FTP sessions are started during
the TRAM session. The seven curves correspond to the number
of FTP sessions ranging from 1 to 7. In each curve, the slope
starts at a sharper angle, then drops down for some time, and
then resumes at a sharper angle. As the number of FTP sessions
increases, the decrease in the slope becomes more significant and
for a longer duration.

V. Conclusions and Future Work

In this paper, we describe a congestion control algorithm suit-
able for a reliable multicast transport with regular feedback from
all receivers. It is similar to other proposals of adapting sliding
window flow control to multicast by implementing the window-

ing algorithm at the receivers and retaining the TCP-like window
adjustments. Our contribution is in describing how to dynam-
ically adjust the data rate used to schedule packet transmission
at the sender to smooth the transmission. These adjustments are
designed to probe the network when the congestion window is
opening wider, and take various precautions as the window is
closing.

We describe some lessons learned in implementing the packet
scheduling algorithm in the transport. When the scheduling is
not done in the kernel, there are some subtle problems due to the
coarse granularity of the sleep() function. Since maintaining a
transmission rate is part of the algorithm, this is an integral part
of the congestion control implementation.

We also describe an algorithm called pruning to remove group
members which are too slow for the good of the whole receiver
group. We explain how pruning is tied to, yet does not interfere
with the congestion control algorithm.

The performance of TRAM has been extensively tested in
LAN environments. The maximum throughput is close to 1
MBytes/sec. A throughput of greater than 500KBytes/sec can
be achieved for up to 120 receivers.

We used Dummynet to emulate a wide-area environment with
limited bandwidth to study TRAM’s behavior and how it shares
traffic with TCP. The throughputs of TRAM and TCP were mea-
sured for a varying number of TCP sessions sharing the bot-
tleneck. The results show TRAM has good stability and fair-
ness properties. Certain configuration parameters can be set to
achieve good TCP-friendliness.

Our results demonstrate that TRAM’s congestion control sys-
tem (several different algorithms) is sound - it delivers good per-
formance, stability in the face of congestion, and fairness.

As the study of TCP congestion control proves, the incorpora-
tion of automatic traffic management algorithms into a protocol
is a very complicated problem. Despite our numerous tests, there
are many facets of the proposed congestion control algorithm that
can profit from further investgation. In particular, the various
parameters in our algorithm can certainly be subjected to more
sensitivity studies. Our approach in this study is largely experi-
mental. It is very desirable to develop an abstract model that can
approximately predict throughput based on receiver population
size and other key parameters of the control algorithm.
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