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Abstract— We consider an overlay architecture where service
providers deploy a set of service nodes (called MSNs) in the
network to efficiently implement media-streaming applications.
These MSNs are organized into an overlay and act as application-
layer multicast forwarding entities for a set of clients.

We present a decentralized scheme that organizes the MSNs
into an appropriate overlay structure that is particularly benefi-
cial for real-time applications. We formulate our optimization
criterion as a “degree-constrained minimum average-latency
problem” which is known to be NP-Hard. A key feature of this
formulation is that it gives a dynamic priority to different MSNs
based on the size of its service set.

Our proposed approach iteratively modifies the overlay tree
using localized transformations to adapt with changing distribu-
tion of MSNs, clients, as well as network conditions. We show that
a centralized greedy approach to this problem does not perform
quite as well, while our distributed iterative scheme efficiently
converges to near-optimal solutions.

I. INTRODUCTION

In this paper we consider a two-tier infrastructure to ef-
ficiently implement large-scale media-streaming applications
on the Internet. This infrastructure, which we call the Overlay
Multicast Network Infrastructure (OMNI), consists of a set of
devices called Multicast Service Nodes (MSNs [1]) distributed
in the network and provides efficient data distribution services
to a set of end-hosts 1. An end-host (client) subscribes with a
single MSN to receive multicast data service. The MSNs them-
selves run a distributed protocol to organize themselves into an
overlay which forms the multicast data delivery backbone. The
data delivery path from the MSN to its clients is independent
of the data delivery path used in the overlay backbone, and
can be built using network layer multicast application-layer
multicast, or a sequence of direct unicasts. The two-tier OMNI
architecture is shown in Figure 1.

In this paper, we present a distributed iterative scheme
that constructs “good” data distribution paths on the OMNI.

1Similar models of overlay multicast have been proposed in the literature
(e.g. Scattercast [2] and Overlay Multicast Network [1]).
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Fig. 1. OMNI Architecture.

Our scheme allows a multicast service provider to deploy
a large number of MSNs without explicit concern about
optimal placement. Once the capacity constraints of the MSNs
are specified, our technique organizes them into an overlay
topology, which is continuously adapted with changes in the
distribution of the clients as well as changes in network
conditions.

Our proposed scheme is most useful for latency-sensitive
real-time applications, such as media-streaming. Media
streaming applications have experienced immense popularity
on the Internet. Unlike static content, real-time data cannot be
pre-delivered to the different distribution points in the network.
Therefore an efficient data delivery path for real-time content
is crucial for such applications. The quality of media playback
typically depends on two factors: access loads experienced by
the streaming server(s) and jitter experienced by the traffic
on the end-to-end path. Our proposed OMNI architecture
addresses both these concerns as follows: (1) being based on
an overlay architecture, it relieves the access bottleneck at the
server(s), and (2) by organizing the overlay to have low-latency
overlay paths, it reduces the jitter at the clients.

For large scale data distributions, such as live webcasts, we
assume that there is a single source. The source is connected
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to a single MSN, which we call the root MSN. The problem
of efficient OMNI construction is as follows:

Given a set of MSNs with access bandwidth con-
straints distributed in the network, construct a mul-
ticast data delivery backbone such that the overlay
latency to the client set is minimized.

Since the goal of OMNIs is to minimize the latencies to the
entire client set, MSNs that serve a larger client population
are, therefore, more important than the ones which serve only
a few clients. The relative importance of the corresponding
MSNs vary, as clients join and leave the OMNI. This, in turn,
affects the structure of the data delivery path of the overlay
backbone. Thus, one of the important considerations of the
OMNI is its ability to adapt the overlay structure based on the
distribution of clients at the different MSNs.

Our overlay construction objective for OMNIs is related
to the objective addressed in [3]. In [3] the authors propose
a centralized greedy heuristic, called the Compact Tree algo-
rithm, to minimize the maximum latency from the source (also
known as the diameter) to an MSN. However the objective of
this minimum diameter degree-bounded spanning tree problem
does not account for the difference in the relative importance
of MSNs depending on the size of the client population that
they are serving. In contrast we formulate our objective as
the minimum average-latency degree-bounded spanning tree
problem which weighs the different MSNs by the size of
the client population that they serve. We propose an iterative
distributed solution to this problem, which dynamically adapts
the tree structure based on the relative importance of the
MSNs. Additionally we show how our solution approach
can be easily augmented to define an equivalent distributed
solution for the minimum diameter degree-bounded spanning
tree problem.

The rest of the paper is structured as follows: In the next
section we formalize and differentiate between the definition
of these problems. In Section III we describe our solution
technique. In Section IV we study the performance of our tech-
nique through detailed simulation experiments. In Section V
we discuss other application-layer multicast protocols that are
related to our work. Finally, we present our conclusions in
Section VI.

II. PROBLEM FORMULATION

In this section we describe the network model and state
our solution objectives formally. We also outline the practical
requirements that our solution is required to satisfy.

The physical network consists of nodes connected by links.
The MSNs are connected to this network at different points
through access links.

The multicast overlay network is the network induced by
the MSNs on this physical topology. It can be modeled as a
complete directed graph, denoted by G = (V,E), where V is
the set of vertices and E = V × V is the set of edges. Each
vertex in V represents an MSN. The directed edge from node
i to node j in G represents the unicast path from MSN i to
MSN j in the physical topology The latency of an edge 〈i, j〉

corresponds to the unicast path latency from MSN i to MSN
j.

The data delivery path on the OMNI will be a directed
spanning tree of G rooted at the source MSN, with the edges
directed away from the root. Consider a multicast application
in which the source injects traffic at the rate of B units per
second. We will assume that the the capacity of any incoming
or outgoing access link is no less than B. Let the outgoing
access link capacity of MSN i be bi. Then the MSN can send
data to at most di = �bi/B� other MSNs. This imposes an
out-degree bound at MSN i on the overlay tree of the OMNI 2.

The overlay latency Li,j from MSN i to MSN j is the
summation of all the unicast latencies along the overlay path
from i to j on the tree, T . The latency experienced by a
client (attached to MSN i) consists of three parts: (1) the
latency from the source to the root MSN, r, (2) the latency
from the MSN i to itself, and (3) the overlay latency Lr,i on
the OMNI from MSN r to MSN i. The arrangement of the
MSNs affects only the overlay latency component, and the
first two components do not depend on the OMNI overlay
structure. Henceforth, for each client we only consider the
overlay latency Lr,i between the root MSN and MSN i as
part of our minimization objective in constructing the OMNI
overlay backbone.

We consider two separate objectives. Our first objective is to
minimize the average (or total) overlay latency of all clients.
Let ci be the number of clients that are served by MSN i.
Then minimizing the average latency over all clients translates
to minimizing the weighted sum of the latencies of all MSNs,
where ci denote the MSN weights.

The second objective is to minimize the maximum overlay
latency for all clients. This translates to minimizing the
maximum of the overlay latency of all MSNs. Let S denote
the set of all MSNs other than the source. Then the two
problems described above can be stated as follows:

P1: Minimum average-latency degree-bounded directed
spanning tree problem: Find a directed spanning tree, T of
G rooted at the MSN, r, satisfying the degree-constraint at
each node, such that

∑
i∈S ciLr,i is minimized.

P2: Minimum maximum-latency degree-bounded directed
spanning tree problem: Find a directed spanning tree, T of
G rooted at the MSN, r, satisfying the degree-constraint at
each node, such that maxi∈S Lr,i is minimized.

The minimum average-latency degree-bounded directed
spanning tree problem, as well as the minimum maximum-
latency degree-bounded directed spanning tree problem, are
NP-hard [5], [3]. For brevity, in the rest of this paper, we will
refer to these problems as the min avg-latency problem and the
min max-latency problem, respectively. We focus on the min
avg-latency problem because we believe that by weighting the

2Internet measurements have shown that links in the core networks are
over-provisioned, and therefore are not bottlenecks [4].
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overlay latency costs by the number of clients at each MSN,
this problem better captures the relative importance of the
MSNs in defining the overlay tree. In this paper we describe an
iterative heuristic approach that can be used to solve the min
avg-latency problem. In the solution description we also briefly
highlight the changes necessary to our distributed solution to
solve the min max-latency problem that has been addressed in
prior work [3].

The development of the our approach is motivated by the
following set of desirable features that make the solution
scheme practical.
Decentralization: We require a solution to be to imple-
mentable in a distributed manner. It is possible to think of
a solution where the information about the client sizes of
the MSNs and the unicast path latencies are conveyed to a
single central entity, which then finds a “good” tree (using
some algorithm), and then directs the MSNs to construct
the tree obtained. However, the client population can change
dynamically at different MSNs which would require frequent
re-computation of the overlay tree. Similarly, changes in
network conditions can alter latencies between MSNs which
will also incur tree re-computation. Therefore a centralized
solution is not practical for even a moderately sized OMNI.
Adaptation: The OMNI overlay should adapt to changes in
network conditions and changes in the distribution of clients
at the different MSNs.
Feasibility: The OMNI overlay should adapt the tree structure
by making incremental changes to the existing tree. However
at any point in time the tree should satisfy all the degree
constraints at the different MSNs. Any violation of degree
constraint would imply an interruption of service for the
clients. Therefore, as the tree adapts its structure towards an
optimal solution using a sequence of optimization steps, none
of the transformations should violate the degree constraints of
the MSNs.

Our solution, as described in the next section, satisfies all
the properties stated above.

III. SOLUTION

In this section we describe our proposed distributed iterative
solution to the problem described in Section II that meets all
of the desired objectives. In this solution description, we focus
on the min avg-latency problem and only point out relevant
modifications needed for the min max-latency problem.

A. State at MSNs

For an MSN i, let Children(i) indicate the set of children
of i on the overlay tree and let ci denote the number of clients
being directly served by i. We use the term aggregate subtree
clients (Si) at MSN i to denote the entire set of clients served
by all MSNs in the subtree rooted at i. The number of such
aggregate subtree clients, si = |Si| is given by:

si = ci +
∑

j∈Children(i)

sj

For example in Figure 1, sF = 3, sE = 5, sD = 1,
sC = 6, sB = 8, and sA = 14. We also define a term called
aggregate subtree latency (Λi) at any MSN, i, which denotes
the summation of the overlay latency of each MSN in the
subtree, from MSN i which is weighted by the number of
clients at that MSN. This can be expressed as:

Λi =
{

0 if i is a leaf MSN∑
j∈Children(i) sj li,j + Λj otherwise

where, li,j is the unicast latency between MSNs i and j. In
Figure 1, assuming all edges between MSNs have unit unicast
latencies, ΛF = ΛE = ΛD = 0, ΛC = 3, ΛB = 6, and
ΛA = 23. The optimization objective of the min avg-latency
problem is to minimize the average subtree latency of the root,
Λ̄r, (also called the average tree latency) 3.

Each MSN i keeps the following state information:

• The overlay path from the root to itself: This is used
to detect and avoid loops while performing optimization
transformations.

• The value, si, representing the number of aggregate
subtree clients.

• The aggregate subtree latency: This is aggregated on the
OMNI overlay from the leaves to the root.

• The unicast latency between itself and its tree neighbors:
Each MSN periodically measures the unicast latency to
all its neighbors on the tree.

Each MSN maintains state for all its tree neighbors and all its
ancestors in the tree. If the minimum out-degree bound of an
MSN is two, then it maintains state for at most O(degree +
logN) other MSNs.

We decouple our proposed solution into two parts —
an initialization phase followed by successive incremental
refinements. In each of these incremental operations, no global
interactions are necessary. A small number of MSNs interact
with each other in each transformation to adapt the tree so that
the objective function improves.

B. Initialization

In a typical webcast scenario data distribution is scheduled
to commence at a specific time. Prior to this instant the MSNs
organize themselves into an initial data delivery tree. Note that
the clients of the different MSNs join and leave dynamically.
Therefore no information about the client population sizes is
available a priori at the MSNs during the initialization phase.

Each MSN that intends to join the OMNI measures the
unicast latency between itself and the root MSN and sends
a JoinRequest message to the root MSN. This message con-
tains the tuple 〈LatencyToRoot,DegreeBound〉. The root MSN
gathers JoinRequests from all the different MSNs, creates the
initial data delivery tree using a simple centralized algorithm,
and distributes it to the MSNs.

3The maximum subtree latency, λmax
i at an MSN, i, is the overlay latency

from i to another MSN j which has the maximum overlay latency from i
among the MSNs in the subtree rooted at i, i.e. λmax

i = max{Li,j |j ∈
Subtree(i)}. The optimization objective of the min max-latency problem is to
minimize the maximum subtree latency of the root.
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Procedure : CreateInitialTree(r, S)
SortedS ← Sort S in increasing order of dist. from r

{ Assert: SortedS[1] = r }
i ← 1
for j ← 2 to Ndo

while SortedS[i].NumChildren = SortedS[i].DegBd
i+ +

end while
SortedS[j].Parent ← SortedS[i]
SortedS[i].NumChildren + +

end for

Fig. 2. Initial tree creation algorithm for the initialization phase. r is
the root MSN, S is an array of all the other MSNs and N is the number
of MSNs.

r

1 2

3
4

8
7 6 5

Source

Fig. 3. Initialization of the OMNI using Procedure CreateInitialTree. r is
the root MSN of the tree. The remaining MSNs are labeled in the increasing
order of unicast latencies from r. In this example, we assume that each MSN
has a maximum out-degree bound of two.

This centralized initialization procedure is described in
pseudo-code in Figure 2. We describe this operation using
the example in Figure 3. In this example, all MSNs have
a maximum out-degree bound of two. The root, r, sorts
the list of MSNs in an increasing order of distance from
itself. It then fills up the available degrees of MSNs in this
increasing sequence. It starts with itself and chooses the next
closest MSNs (1 and 2) to be its children. It next chooses its
closest MSN (1) and assigns MSNs 3 and 4 (the next closest
MSNs with unassigned parents) as its children. Continuing this
process, the tree shown in Figure 3 is constructed.

The centralized algorithm guarantees the following (see
proof in the Appendix):

If the triangle inequality holds on the overlay and if
the degree bound of each MSN is at least 2, then
overlay latency from the root MSN to any other
MSN, i, is bounded by 2 lr,i logN , where N is the
number of MSNs in the OMNI, and lr,i is the direct
unicast latency between the root MSN, r, and MSN
i.

The centralized computation of this algorithm is acceptable be-
cause it operates off-line before data delivery commences. An
optimal solution to the min avg-latency problem is NP-Hard

g

p

1 2
c

Available
Degree3

g

p

1 2

c
3

Fig. 4. Child-Promote operation. g is the grand-parent, p is the parent and
c is the child. The maximum out-degree of all MSNs is three. MSN c is
promoted in this example.
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c

3 5
4

Other 
MSNs

g

p

1 2

c

3 5
4

Other 
MSNs

Fig. 5. Parent-Child Swap operation. g is the grand-parent, p is the parent
and c is the child. Maximum out-degree is three.

and would typically require O(N2) latency measurements
(i.e. between each pair of MSNs). In contrast, the centralized
solution provides a reasonable latency bound using only O(N)
latency measurements (one between each MSN and the root
MSN). Note that the logN approximation bound is valid for
each MSN. Therefore this initialization procedure is able to
guarantee a logN approximation for both the min avg-latency
problem as well as the min max-latency problem.

The initialization procedure, though oblivious of the distri-
bution of the clients at different MSNs, still creates a“good”
initial tree. This data delivery tree will be continuously trans-
formed through local operations to dynamically adapt with
changing network conditions (i.e. changing latencies between
MSNs) and changing distribution of clients at the MSNs.
Additionally new MSNs can join and existing MSNs can leave
the OMNI even after data delivery commences. Therefore the
initialization phase is optional for the MSNs, which can join
the OMNI, even after the initialization procedure is done.

C. Local Transformations

We define a local transformation as one which requires
interactions between nearby MSNs on the overlay tree. In
particular these MSNs are within two levels of each other.
We define five such local transformation operations that are
permissible at any MSN of the tree. Each MSN periodically
attempts to perform these operations. This period is called
the transformation period and is denoted by τ . The operation
is performed if it reduces the average-latency of the client
population.

Child-Promote: If an MSN g has available degree, then one
of its grand-children (e.g. MSN c in Figure 4) is promoted to
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Fig. 6. Iso-level-2 Swap operation. g is the grand-parent, p and q are siblings.
x and y are swapped.

p

1 x
c

y 3
2

p

1
c

y 3
2

x

Fig. 7. Aniso-level-1-2 Swap operation. p is the parent of c. x and y are
swapped.

be a direct child of g if doing so reduces the aggregate subtree
latency for the min avg-latency problem. This is true if:

(lg,c − lg,p − lp,c)sc < 0

For the min max-latency problem, the operation is performed
only if it reduces the maximum subtree latency at g which can
be verified by testing the same condition as above.

If the triangle inequality holds for the unicast latencies
between the MSNs, this condition will always be true. If
multiple children of p are eligible to be promoted, a child
which maximally reduces the aggregate (maximum) subtree
latency for the min avg-latency (min max-latency) problem is
chosen.

Parent-Child Swap: In this operation the parent and child
are swapped as shown in Figure 5. Note grand-parent, g is the
parent of c after the transformation and c is the parent of p.
Additionally one child of c is transferred to p. This is done
if and only if the out-degree bound of c gets violated by the
operation (as in this case). Note that in such a case only one
child of c would need to be transferred and p would always
have an available degree (since the transformation frees up
one of its degrees). The swap operation is performed for the
min avg-latency (min max-latency) problem if and only if the
aggregate (maximum) subtree latency at g reduces due to the
operation. Like the previous case, if multiple children of p
are eligible for the swap operation, a child which maximally
reduces the aggregate (maximum) subtree latency for the min
avg-latency (min max-latency) problem is chosen.

Iso-level-2 Swap: We define an iso-level operation as one
in which two MSNs at the same level swap their positions on
the tree. Iso-level-k denotes a swap where the swapped MSNs
have a common ancestor exactly k levels above. Therefore,

r

1

65 7

p

y

3

x

2

8 9

4

10

q

r

1

65 7

p

y

3

x

2

8 9

4

10

q

Number of clients served
by each MSN at this level

4

3

2

1

Fig. 8. Example where the five local operations cannot lead to optimality
in the min avg-latency problem. All MSNs have maximum out-degree bound
of two. r is the root. Arrow lengths indicate the distance between MSNs.

the iso-level-2 operation defines such a swap for two MSNs
that have the same grand-parent. As before, this operation is
performed for the min avg-latency (min max-latency) problem
between two MSNs x and y if and only if it reduces the
aggregate (maximum) subtree latency (e.g. Figure 6).

Iso-level-2 Transfer: This operation is analogous to the
previous operation. However, instead of a swap, it performs a
transfer. For example, in Figure 6, Iso-level-2 transfer would
only shift the position of MSN x from child of p to child of
q. MSN y does not shift its position. This operation is only
possible if q has available degree.

Aniso-level-1-2 Swap: An aniso-level operation involves
two MSN that are not on the same level of the overlay tree.
An aniso-level-i-j operation involves two MSNs x and y for
which the ancestor of x, i levels up, is also the ancestor of
y, j levels up. Therefore the defined swap operation involves
two MSNs x and y where the parent of x is the same as the
grand-parent of y (as shown in Figure 7). The operation is
performed if and only if it reduces the aggregate (maximum)
subtree latency at p for the min avg-latency (min max-latency)
problem.

Following the terminology as described, the Child-Promote
operation is actually the Aniso-level-1-2 transfer operation.

D. Probabilistic Transformation

Each of the defined local operations reduce the aggregate
(maximum) subtree latency on the tree for the min avg-
latency (min max-latency) problem. Performing these local
transformations will guide the objective function towards a
local minimum. However, as shown in the example in Figure 8,
they alone cannot guarantee that a global minimum will be
attained. In the example, the root MSN supports 4 clients.
MSNs in level 1 (i.e. 1 and 2) support 3 clients each, MSNs
in level 2 support 2 clients each and MSNs in level 3 support
a single client each. The arrow lengths indicate the unicast
latencies between the MSNs. Initially lp,y + lq,x < lp,x + lq,y

and the tree as shown in the initial configuration was formed.
The tree in the initial configuration was the optimal tree for
our objective function. Let us assume that due to changes in
network conditions (i.e., changed unicast latencies) we now
have lp,y + lq,x > lp,x + lq,y. Therefore the objective function
can now be improved by exchanging the positions of MSNs x
and y in the tree. However, this is an iso-level-3 operation,
and is not one of the local operations. Additionally it is
easy to verify that any local operation to the initial tree will
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1: Join at available degree

4
c

nJoin

2: Split edge and Join

5

p

1 2 3

4
c

n

JoinRequest p

1 2 3

4
c

n
JoinRequest 5

3: Re-try at next level

Fig. 9. Join operation for a new MSN. At each level there are three choices available to the joining MSN as shown. For each MSN, the maximum out-degree
bound is 3.

increase the objective function. Therefore no sequence of local
operation exists that can be applied to the initial tree to reach
the global minima.

Therefore we define a probabilistic transformation step that
allows MSNs to discover such potential improvements to the
objective function and eventually converge to the global min-
ima. In each transformation period, τ , an MSN will choose to
perform a probabilistic transformation with a low probability,
prand.

If MSN i chooses to perform a probabilistic transformation
in a specific transformation period, it first discovers another
MSN, j, from the tree that is not its descendant. This discovery
is done by a random-walk on the tree, a technique proposed
in Yoid [6]. In this technique, MSN i transmits a Discover
message with a time-to-live (TTL) field to its parent on the
tree. The message is randomly forwarded from neighbor to
neighbor, without re-tracing its path along the tree and the
TTL field is decremented at each hop. The MSN at which the
TTL reaches zero is the desired random MSN.

Random Swap: We perform the probabilistic transforma-
tion only if i and j are not descendant and ancestor of
each other. In the probabilistic transformation, MSNs i and
j exchange their positions in the tree. For the min avg-latency
(min max-latency) problem, let ∆ denote the increase in the
aggregate (maximum) subtree latency of MSN k which is the
least common ancestor of i and j on the tree (in Figure 8, this
is the root MSN, r). k is identified by the Discover message
as the MSN where the message stops its ascent towards the
root and starts to descend. For the min avg-latency problem,
∆ can be computed as follows:

∆ = (L′
k,i − Lk,i)si + (L′

k,j − Lk,j)sj

where, L′
k,i and L′

k,j denote the latencies from k to i and j re-
spectively along the overlay if the transformation is performed,
and Lk,i and Lk,j denotes the same prior to the transformation.
Each MSN maintains unicast latency estimates of all its
neighbors on the tree. The Discover message aggregates the
value of Lk,j on its descent from k to j from these unicast
latencies. Similarly, a separate TreeLatency message from k to
i computes the value of Lk,i. (We use a separate message from
k to i since we do not assume symmetric latencies between
any pair of MSNs.) The L′ values is computed from the L
values and pair-wise unicast latencies between i, j and their

2 3

5

1

4

7
6

Leaving
MSN 2

5

1

4

7
6

Fig. 10. Leave operation of an MSN. The maximum out-degree of each
MSN is two.

parents. Thus, no global state maintenance is required for this
operation.

We use a simulated annealing [7] based technique to prob-
abilistically decide when to perform the swap operation. The
swap operation is performed: (1) with a probability of 1 if
∆ < 0, and (2) with a probability e−∆/T if ∆ ≥ 0, where
T is the “temperature” parameter of the simulated annealing
technique. In the min avg-latency (min max-latency) problem,
the swap operation is performed with a (low) probability even
if the aggregate (maximum) subtree latency increases. This
is useful in the search for a global optimum in the solution
space. Note that the probability of the swap gets exponentially
smaller with increase in ∆.

E. Join and Leave of MSNs

In our distributed solution, we allow MSNs to arbitrarily
join and leave the OMNI overlay. In this section, we describe
both these operations in turn.

Join: A new MSN initiates its join procedure by sending
the JoinRequest message to the root MSN. JoinRequest mes-
sages received after the initial tree creation phase invokes the
distributed join protocol (as shown in Figure 9). At each level
of the tree, the new MSN, n, has three options.

1) Option 1: If the currently queried MSN, p, has available
degree, then n joins as its child. Some of the current
children of c (i.e. 1 and 2) may later join as children of
n in a later Iso-level-2 transfer operation.

2) Option 2: n chooses a child, c, of p and attempts to
split the edge between them and join as the parent of
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c. Additionally some of the current children of c are
shifted as children of n.

3) Option 3: n re-tries the join process from some MSN,
c.

Option 1 has strict precedence over the other two cases. If
option 1 fails, then we choose the lowest cost option between 2
and 3. The cost for option 2 can be calculated exactly through
local interactions between n, p, c and the children of c. The
cost of option 3 requires the knowledge of exactly where in the
tree n will join. Instead of this exact computation, we compute
the cost of option 3 as the cost incurred if n joins as a child
of c. This leads to some inaccuracy which is later handled by
the cost-improving local and probabilistic transformations.

Leave: If the leaving MSN is a leaf on the overlay tree, then
no further change to the topology is required 4. Otherwise, one
of the children of the departing MSN is promoted up the tree
to the position occupied by the departing MSN. We show this
with an example in Figure 10. When MSN 3 leaves, one of its
children (4 in this case) is promoted. For the min avg-latency
(min max-latency) problem the child is chosen such that the
aggregate (maximum) subtree latency is reduced the most. The
other children of the departing MSN join the subtree rooted
at the newly promoted child. For example, 5 attempts to join
the subtree rooted at 4. It applies the join procedure described
above starting from MSN 4, and is able to join as a child of
MSN 7.

Note that MSNs are specially managed infrastructure enti-
ties. Therefore it is expected that their failures are rare and
most departures from the overlay will be voluntary. In such
scenarios the overlay will be appropriately re-structured before
the departure of an MSN takes effect.

IV. SIMULATION EXPERIMENTS

We have studied the performance of our proposed dis-
tributed scheme through detailed simulation experiments. Our
network topologies for these experiments were generated
using the Transit-Stub graph model of the GT-ITM topology
generator [8]. All topologies in these simulations had 10, 000
nodes (representing network routers) with an average node
degree between 3 and 4. MSNs were attached to a set of these
routers, chosen uniformly at random. As a consequence unicast
latencies between different pairs of MSNs varied between 1
and 200 ms. The number of MSNs was varied between 16 and
512 for different experiments.

In our experiments we compare the performance of our
distibuted iterative scheme to these other schemes:

• The optimal solution: We computed the optimal value of
the problem by solving an Integer Program (IP) using the
CPLEX tool 5. We describe the formulation of this IP in
the Appendix. Computation of the optimal value using an
IP requires a search over a O(MN ) solution space, where
M is the total number of clients and N is the number

4The clients of the leaving MSNs need to be re-assigned to some other
MSN, but that is an orthogonal issue to OMNI overlay construction.

5Available from http://www.ilog.com.

of MSNs. We were able to compute the optimal solution
for networks with upto 100 clients and 16 MSNs.

• A centralized greedy heuristic solution: This heuristic is
a simple variant of the Compact Tree algorithm proposed
in [3]. It incrementally builds a spanning tree from the
root MSN, r. For each MSN v that is not yet in the
partial tree T , we maintain an edge e(v) = {u, v} to
an MSN u in the tree; u is chosen to minimize a cost
metric δ(v) = (Lr,u + lu,v)/cv where, Lr,u is the overlay
latency from the root of the partial tree to u and cv is the
number of clients being served by v. At each iteration
we add one MSN (say v) to the partial tree which has
minimum value for δ(v). Then for each MSN w not in
the tree, we update e(w) and δ(w).
The centralized greedy heuristic proposed in [3] addresses
the min max-latency problem. Our simple modification
to that algorithm only changes the cost metric and is the
equivalent centralized greedy heuristic for the min avg-
latency problem as described in Section II.

A. Convergence

We first present convergence properties of our solution for
OMNI overlay networks. Figures 11, 12 and 13 show the
evolution of the average tree latency, Λ̄r, (our minimization
objective) over time for different experiment parameters for an
example network configuration consisting of 16 MSNs. The
MSNs serve between 1 and 5 clients, chosen uniformly at
random for each MSN. In these experiments the set of 16
MSNs join the OMNI at time zero. We use our distributed
scheme to let these MSNs organize themselves into the appro-
priate OMNI overlay. The x-axis in these figures are in units
of the transformation period parameter, τ , which specifies the
average interval between each transformation attempt by the
MSNs. The ranges of the axes in these plots are different, since
we focus on different time scales to observe the interesting
characteristics of these results.

Figure 11 shows the efficacy of the initialization phase.
When none of the MSNs make use of the initialization
phase, the initial tree has Λ̄r = 158.92 ms. In contrast, if
the initialization phase is used by all MSNs, the initial tree
has Λ̄r = 133.18 ms, a 16% reduction in cost. In both
cases, however, the overlay quickly converges (within < 8
transformation periods) to a stable value of Λ̄r ≈ 124.5 ms.
The optimal value computed by the IP for this experiment was
113.96 ms. Thus, the cost of our solution is about 9% higher
than the optimal. We ran different experiments for different
network configurations and found that our distributed scheme
converges to within 5 − 9% of the optimum in all cases. A
greedy approach to this problem does not work quite as well.
The centralized greedy heuristic gives a solution with value
151.59 ms, and is about 21% higher than the converged value
of the distributed scheme. In both these cases we had chosen
the probability of a random-swap, prand, at the MSNs to be
0.1 and the T parameter of simulated-annealing to be 10.

In Figure 12 we show how the choice of prand affects
the results. The initialization phase is used by MSNs for all
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the results shown in this figure. The local transformations
occur quite rapidly and quickly reduces the cost of the tree
for all the different cases. The prand = 0 case has no

probabilistic transformations and is only able to reach a stable
value of 129.51 ms. Clearly, once the objective reaches a local
minimum it is unable to find a better solution that will take it
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Number Distributed Centralized Greedy/Iterative
of MSNs Iterative Scheme Greedy Scheme Ratio

16 146.81 174.32 1.17
32 167.41 231.64 1.34
64 182.60 258.88 1.40
128 194.49 291.44 1.49
256 191.51 289.67 1.51
512 171.77 262.94 1.53

TABLE I

COMPARISON OF THE BEST SOLUTION (IN MS) OF THE AVERAGE TREE

LATENCY OBTAINED BY OUR PROPOSED DISTRIBUTED ITERATIVE SCHEME

AND THE CENTRALIZED GREEDY HEURISTIC WITH VARYING OMNI SIZES,

AVERAGED OVER 10 RUNS EACH.

towards a global minimum. As prand increases, the search for
a global minimum becomes more aggressive and the objective
function reaches the lower stable value rapidly. Figure 13
shows the corresponding plots for varying the T parameter.
A higher T value in the simulated-annealing process implies
that a random swap that leads to cost increment is permitted
with a higher probability. For the moderate and high value of
T (10 and 20), the schemes are more aggressive and hence the
value of Λ̄r experiences more oscillations. In the process both
these schemes are aggressively able to find better solutions to
the objective function. The oscillations are restricted to within
2% of the converged value.

Figures 14, 15, and 16 show the corresponding plots for
experiments with 256 MSNs. Note that for the 256 MSN
experiments, the best solution found by different choice of
parameters has Λ̄r = 181.53 ms. Our distributed solution
converges to this value after 7607 transformation period (τ )
units. However, it converges to within 15% of the best solution
within 5 transformation periods. Figure 14 shows the effect
of the temperature parameter for the convergence. As before
the oscillations are higher for higher temperatures, but are
restricted to less than 1% of the converged value (the y-axis
is magnified to illustrate the oscillations in this plot). This
experiment also indicates that a greedy approach does not
work well for this problem. The solution found by the greedy
heuristic for this network configuration is 43% higher than the
one found by our proposed technique.

We present a comparison of our scheme with the greedy
heuristic in Table I. We observe that the performance of our
proposed scheme gets progressively better than the greedy
heuristic with increasing size of the OMNI overlay.

B. Adaptability

We next present results of the the adaptability of our dis-
tributed scheme for MSN joins and leaves, changes in network
conditions and changing distribution of client populations.
MSNs join and leave: We show how the distributed scheme
adapts the OMNI as different MSNs join and leave the overlay.
Figure 17 plots the average tree latency for a join-leave
experiment involving 248 MSNs. In this experiment, 128
MSNs join the OMNI during the initialization phase. Every
1500 transformation periods (marked by the vertical lines in

the figure), a set of MSNs join or leave. For example, at
time 6000, 64 MSNs join the OMNI and at time 7500, 64
MSNs leave the OMNI. These bulk changes to the OMNI
are equivalent to a widespread network outage, e.g. a network
partition. The other changes to the OMNI are much smaller,
e.g. 8-32 simultaneous changes as shown in the figure. In
each case, we let the OMNI converge before the next set of
changes is effected. In all these changes the OMNI reaches to
within 6% of its converged value of Λ̄r within 5 transformation
periods.

In Figure 18 we show the distribution of the number of
transformations that happen in the first 10 transformation
periods after a set of changes. (We only plot these distributions
for 5 sets of changes — initial join of 128 MSNs, 8 MSNs
join at time 1500, 64 MSNs join at time 6000, 64 MSNs
leave at time 7500, and 8 MSNs leave at time 12000.) The
bulk of the necessary transformations to converge to the best
solution occur within the first 5 transformation periods after
the change. Of these a vast majority (more than 97%) are due
to local transformations.

These results suggest that the transformation period at the
MSNs can be set to a relatively large value (e.g. 1 minute) and
the OMNI overlay would still converge within a short time.
It can also be set adaptively to a low value when the OMNI
is experiencing a lot of changes for faster convergence and a
higher value when it is relatively stable.
Changing client distributions and network conditions: A
key aspect of the proposed distributed scheme is its ability
to adapt to changing distribution of clients at the different
MSNs. In Figure 19, we show a run from a sample experiment
involving 16 MSNs. In this experiment, we allow a set of
MSNs to join the overlay. Subsequently we varied the number
of clients served by MSN x over time and observed its effects
on the tree and the overlay latency to MSN x. The figure
shows the time evolution of the relevant subtree fragment of
the overlay.

In its initial configuration, the overlay latency from MSN
0 to MSN x is 59 ms. As the number of clients increases to
7, the importance of MSN x increases. It eventually changes
its parent to MSN 4 (Panel 1), so that its overlay latency
reduces to 54 ms. As the number of clients increases to 9, it
becomes a direct child of the root MSN (Panel 2) with an even
lower overlay latency of 51 ms. Subsequently the number of
clients of MSN x decreases. This causes x to migrate down the
tree, while other MSNs with larger client sizes move up. This
example demonstrates how the scheme prioritizes the MSNs
based on the number of clients that they serve.

We also performed similar experiments to study the effects
of changing unicast latencies on the overlay structure. If the
unicast latency on a tree edge between parent MSN x and one
of its children, MSN y, goes up, the distributed scheme simply
adapts the overlay by finding a better point of attachment for
MSN y. Therefore, in one of our experiments, we picked an
MSN directly connected to the root and increased its unicast
latencies to all other MSNs (including the root MSN). A high
latency edge close to the root affects a large number of clients.
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Therefore our distributed scheme adapted the overlay to reduce
the average tree latency by moving this MSN to a leaf position
in the tree, so that it cannot affect a large number of clients.

V. RELATED WORK

A number of other projects (e.g. Narada [9], NICE [10],
Yoid [6], Gossamer [2],Overcast [11],ALMI [12], Scribe [13],
Bayeux [14] multicast-CAN [15]) have explored implementing
multicast at the application layer. However, in these protocols
the end-hosts are considered to be equivalent peers and are
organized into an appropriate overlay structure for multicast
data delivery. In contrast, our work in this paper describes
the OMNI architecture which is defined as a two-tier overlay
multicast data delivery architecture.

An architecture similar to OMNI has also been proposed
in [1] and their approach of overlay construction is related to
ours. In [3] and [1] the authors proposed centralized heuristics
to two related problems — minimum diameter degree-limited
spanning tree and limited diameter residual-balanced spanning
tree. The minimum diameter degree-limited spanning tree
problem is same as the min max-latency problem. The focus
of our paper is the min avg-latency problem, which better
captures the relative importance of different MSNs based on

the number of clients that are attached to them. In contrast to
the centralized greedy solution proposed in [3], we propose an
iterative distributed solution to the min avg-latency problem
and show how it can be adapted to solve the min max-latency
problem as well. Scattercast [2] defines another overlay-
based multicast data delivery infrastructure, where a set of
ScatterCast Proxies (SCXs) have responsibilities equivalent
to the MSNs in the OMNI architecture. The SCXs organize
themselves into a data delivery tree using the Gossamer
protocol [2], which as mentioned before, does not organize
the tree based on the relative importance of the SCXs. Clients
register with these SCXs to receive multicast data.

VI. CONCLUSIONS

We have presented an iterative solution to the min avg-
latency problem in the context of the OMNI architecture. Our
solution is completely decentralized and each operation of our
scheme requires interaction between only the affected MSNs.
This scheme continuously attempts to improve the quality of
the overlay tree with respect to our objective function. At
each such operation, our scheme guarantees that the feasibility
requirements, with respect to the MSN out-degree bounds,
are met. Finally, our solution is adaptive and appropriately
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transforms the tree with join and leave operations of MSNs,
changes in network conditions and distribution of clients at
different MSNs.
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APPENDIX

I: PROOF OF APPROXIMATION RATIO

Here we show that our initialization procedure (Section III-
B) ensures that the overlay latency of any MSN is at most
2 log2N times the direct unicast latency of the MSN from the
root MSN.

We assume that unicast latencies follow the triangle inequal-
ity. We also assume that unicast path latencies are symmetric,
i.e., for any 〈i, j〉 ∈ E, li,j = lj,i.

Consider any MSN i in the OMNI constructed by our
initialization procedure. Note that the MSNs were added in the
increasing order of their unicast latencies from the root MSN,
r. Therefore, for any MSN j that lies in the overlay path from r
to i, lr,j ≤ lr,i. Thus for any two nodes j and k on the overlay
path from r to i, lj,k ≤ lj,r + lr,k = lr,j + lr,k ≤ 2lr,i (using
symmetry and the triangle inequality). Let Ei ⊆ E be the set
of edges in the overlay path from r to i. Since the minimum

out-degree of any MSN is two, it follows that |Ei| ≤ log2N .
Let Ei ⊆ E be the set of edges on the overlay path from r to
i. Thus Lr,i =

∑
(j,k)∈Ei

lj,k ≤ 2lr,i|Ei| ≤ 2lr,i log2N .

II: INTEGER-PROGRAMMING FORMULATION

Here we present a linear integer programming formulation
for the avg-latency problem, which can be used to solve
the problem optimally using CPLEX. Developing a nonlinear
integer programming formulation for this problem is not
difficult. However, CPLEX is typically much more efficient in
solving linear integer programs. In the formulation described
below, the number of variables and constraints are also linear
in the size of the OMNI.

For each edge 〈i, j〉 ∈ E in graph G, define two variables:
a binary variable xi,j , and a non-negative real (or integer)
variable fi,j , where xi,j denotes whether or note the edge
〈i, j〉 is included in the tree and fi,j denotes the number of
clients which are served through edge 〈i, j〉.

Then the avg-latency problem can be formulated as:

minimize
1
N

∑

〈i,j〉∈E

li,jfi,j

subject to
∑

k∈V \{i}

fk,i −
∑

k∈V \{i}

fi,k = ci ∀i ∈ V \ {r} (1)

0 ≤ fi,j ≤ Cxi,j ∀〈i, j〉 ∈ E (2)∑

〈i,j〉∈E

xi,j ≤ N − 1 (3)

xi,j ∈ {0, 1} ∀〈i, j〉 ∈ E (4)

In Constraint 3 and in the objective function, N is the total
number of MSNs. In Constraint 2, C is the total number of
clients served by the OMNI. The objective function, as well
as Constraint 1, follow from the definition of the variables
fi,j . Constraint 2 ensure that the variable fi,j is zero if xi,j

is zero. Constraint 3 is necessary to enforce the tree structure
of the OMNI overlay. All the contraints together ensure that
the solution is a spanning tree rooted at r.
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