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Abstract� Most of the currently deployed multicast pro-
tocols (e.g. DVMRP, PIM, MOSPF) build one shortest
path multicast tree per sender, the tree being rooted at
the sender�s subnetwork. This paper examines the stabil-
ity of such a tree, speciÞcally, �How does the number of
links change as the number of multicast users in a group
changes?� Two modelling assumptions are made. We as-
sume that (a) packets are delivered along the shortest path
tree (which is a realistic assumption as indicated above) and
that (b) the m multicast group member nodes are chosen
uniformly out of the total number of nodes N . The probabil-
ity density function for the number of changed edges ∆N (m)
when one multicast user joins or leaves the group is studied.
For random graphs of the class Gp (N) with N nodes, link
density p and with uniformly (or exponentially) distributed
link weights, the probability density function Pr [∆N (m) = k]
is proved to tend to a Poisson distribution for large N . The
proof of this theorem enables a generalization to an arbi-
trary topology. Simulations, mainly conducted to quantify
the validity of the asymptotic regime, reveal that the Pois-
son law seems more widely valid than just in the asymp-
totic regime where N →∞. In addition, the effect of the link
weight distribution on the stability of the multicast tree is
investigated. Finally, the stability of a Steiner tree connect-
ing m multicast users is compared to the shortest path tree
via simulations.
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I. Introduction

The demand for multimedia which combines audio, video
and data streams over a network, is rapidly increasing.
Some of the more popular real-time interactive applica-
tions are desktop video/audio conferencing, shared white
boards, software updates, tele-classing, interactive games
and animated simulations. Even when data compression is
used, multimedia applications require in general a consid-
erable amount of bandwidth. IP multicast is regarded as
a promising network service for group multimedia applica-
tions.
One of the major points of interest in IP multicasting is

the efficient multicast routing. The goal of multicast rout-
ing is to Þnd a loopless (acyclic) tree of links that connects
all the members of the multicast group. Multicast packets
are then forwarded along this tree from the sender to all
multicast group members. Several approaches have been
adopted for determining the multicast spanning tree. The
simplest way to build a spanning tree is to add one par-
ticipant at a time, using a shortest path algorithm (e.g.
Dijkstra�s [16]). New participants are connected along a
shortest path to the nearest node in the existing span-
ning tree. Improved versions of this source-speciÞc tree
principle are implemented in DVMRP [4], MOSPF [5] and
PIM-Dense Mode [7]. While the shortest path tree between
the source node and each destination node guarantees that
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multicast packets will be delivered as fast as possible, it
does not necessarily result in a tree that economizes on
network resources. The second approach is to construct
a single tree to distribute the traffic from all senders in
the group, regardless of the sender�s location, and to min-
imize the total weight of the tree. Hence, it optimizes the
use of network resources. The problem of Þnding a min-
imum weight tree that spans all multicast users is known
as the Steiner tree problem [20]. However, due to the high
computational effort and the less stable dynamic behav-
ior, a Steiner tree is not implemented in multicast routing
protocols. Instead, a group-shared tree used in protocols
like CBT [3] and PIM-SM [6] is based on deÞning a center
node (or rendez-vous point) in the routing tree. Finally, a
third approach is the recently proposed explicit multicast
[21] for small multicast groups. Explicit multicast essen-
tially forwards packets, with in the header all the (unicast)
IP addresses of the multicast group members, along the
shortest paths. At branches of the shortest path tree, the
packet is multiplicated on the outgoing links and the list
of IP addresses in the header is splitted properly.
Apart from the dynamics of topology updates, IP mul-

ticast offers the possibility of joining and leaving a group
at any time. This activity requires the multicast tree to
be dynamically updated (e.g. branches without multicast
members must be discarded.) These changes in the short-
est path tree imply that the forwarding of IP multicast
packets may change dramatically, resulting in undesirable
transient routing effects. The goal of this article is to in-
vestigate and quantify multicast stability, in particular, to
determine the probability density function for the number
of branches that change if one user joins or leaves the group.
In addition, we quantify the common belief (see e.g. the
book of Huitema [11]) that Steiner trees are more instable
than shortest path trees.
The paper is organized as follows. In Section II, we

present the theoretical and analytic results, while Section
III presents simulation results for both the shortest path
(SPT) and the Steiner tree (MST). Finally, we conclude in
Section IV.

II. On the efficiency of multicast.

In this section, previous theoretical results are Þrst
brießy reviewed. For the proofs, discussion and the nice
agreement with Internet measurements, we refer to [14].
In the second part, the stability of the multicast tree is
deÞned and basic theoretical results are deduced.

A. Theory: A review.

We focus on the efficiency or gain of multicast in terms
of network resource consumption compared to unicast.
SpeciÞcally, we concentrate on a one-to-many communi-
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cation, where a source distributes messages (packets) to
m different, uniformly distributed destinations along the
shortest path. In unicast, these messages are sent m
times from the source to each destination. Hence, uni-
cast uses on average fN(m) = mE [HN ] link-traversals or
hops, where E [HN ] is the average number of hops of a
message to a uniform location in the graph under con-
sideration containing N nodes. One of the main prop-
erties of multicast is that it economizes on the number
of link-traversals. If we deÞne for multicast gN(m) to
be the average number of hops in the shortest path tree
rooted at a source to m randomly chosen distinct destina-
tions, then, of course, gN(m) ≤ fN(m). For the extreme
sizes of the multicast group, we have simple expressions:
gN(1) = fN(1) = E [HN ] while gN(N − 1) = N − 1 re-
ßecting the number of links in a (complete) spanning tree.
Below we merely list the more important results obtained
previously [14].
Theorem 1: For any connected graph with N nodes,

m ≤ gN(m) ≤ Nm

m+ 1
. (1)

Theorem 2: For any connected graph with N nodes, the
map m 7→ gN(m) is concave and the map m 7→ gN (m)

fN (m)
is

decreasing.
Next, we need the following deÞnition. Let Xi be the

number of joint hops that all i uniformly chosen and dif-
ferent group members have in common. Then we have the
identity:

Theorem 3: For any connected graph with N nodes,

gN(m) =
mX
i=1

µ
m

i

¶
(−1)i−1E [Xi] . (2)

Corollary 4: For any connected graph, the multicast ef-
Þciency gN(m) is bounded by

fN(m)

gN(m)
≤ E [HN ] , (3)

where E [HN ] is the average number of hops in unicast.
This Corollary 4 means that the maximum savings in

resources an operator can gain by using multicast (over
unicast) never exceeds E [HN ], which is roughly about 15
in Internet today.
Remark the generality of these theorems: they hold for

any graph, including the graph of the Internet. The re-
maining two Theorems only apply to a speciÞc type of
graph. The class of the random graphs Gp (N) with N
nodes, with independently chosen links with probability p
(studied in detail by Bollobas [2] and later by Janson et
al. [10]) and with uniformly on [0,1] (or exponentially)
distributed link metrics w is further referred to as RGU.
Theorem 5: For the class RGU,

gN(m) = mN

µ
ψ(N)− ψ(m)
N −m

¶
− 1, (4)

where ψ(x) is the digamma function. For large N , we have

the accurate asymptotic,

gN(m) ∼ mN

N −m log

µ
N

m

¶
− 1
2

(5)

We have also considered the regular k-ary tree of depth1

D with the source at the root of the tree andm receivers at
randomly chosen nodes. In a k-ary tree the total number
of nodes satisÞes

N = 1 + k + k2 + . . .+ kD =
kD+1 − 1
k − 1 , (6)

so that N ∼ kD.
Theorem 6: For the k-ary tree,

gN,k(m) = N − 1−
D−1X
j=0

kD−j
¡
N−1−kj+1−1

k−1
m

¢¡
N−1
m

¢ . (7)

Figure 1 illustrates the behavior of gm(m) for the ran-
dom graph and several k-values of the k-ary tree together
with the extreme values given by (1). Finally, when Þtting
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Fig. 1. The multicast efficiency gN (m) versus group member size m
in a network with N = 104 nodes and various topologies

Internet measurements with (7) and treating 1 ≤ k ≤ N−1
as a real positive number (instead of an integer), an accu-
rate Þt has been obtained with kInternet = 3.2. Since the
corresponding k-value for the class RGU is kRGU = e =
2.718 . . ., the simple analytic model (5) is well suited to
provide Þrst order estimates of gN(m) in (a subgraph of)
the Internet.

B. Stability.

We now turn to the problem of quantifying the stabil-
ity in a multicast tree and present new theoretical results
which will be veriÞed by simulations in the next section.
Inspired by Poisson arrival processes, at a single instant of
time, we assume that either no or one group member can
leave. In the sequel, we do not make any further assump-
tion about the time-dependent process of leaving/joining a
multicast group and refrain from dependencies on time. As

1The depth D is equal to the number of hops from the root to a
node at the leaves.
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measure for the stability of the multicast tree, the number
of links in the tree that change after one multicast group
member leaves the group has been chosen. If we denote
this quantity by ∆N(m), then, by deÞnition of gN(m), the
average number of changes equals

E [∆N(m)] = gN(m)− gN(m− 1) (8)

Since gN(m) is concave (Theorem 2), E [∆N(m)] is always
positive and decreasing in m. If the scope of m is extended
to real numbers, E [∆N(m)] ≈ g0N(m) which simpliÞes fur-
ther estimates.
The situation where on average less than 1 link changes

if one multicast group member leaves may be regarded as
a stable regime. Since E [∆N(m)] is always positive and
decreasing in m, this regime is reached when the group
size m exceeds m1, which satisÞes E [∆N(m1)] = 1. For
example, for the recursive tree which is the shortest path
tree (as shown in [13]) for the class RGU, this condition
approximately follows from (5) as

E [∆N(m)] ∼ mN

N −m log

µ
N

m

¶
− (m− 1)N
N −m+ 1 log

µ
N

m− 1
¶
(9)

Let x = m
N , then 0 < x < 1 and

E [∆N(m)]

N
∼ −x
1− x log x+

(x− 1/N)
1− (x− 1/N) log

µ
x− 1

N

¶
After expanding the second term in a Taylor series around
x to Þrst order in 1

N ,

E [∆N(xN)] ∼ x− 1− logx
(1− x)2 +O

µ
1

N

¶
Hence, for large N , E [∆N(x1N)] ∼ 1 occurs when x1 =
0.3161, which is the solution in x of x−1−logx(1−x)2 = 1. For the
class RGU, a stable tree as deÞned above is obtained when
the multicast group size m is larger than m1 = 0.3161N ≈
N
3 . In the sequel, since m1 is high and of less practical
interest, we will focus on multicast group sizes smaller than
m1. The computation ofm1 for other graph types turns out
to be difficult. Since, as mentioned above, the comparison
with Internet measurement (see [14]) shows that formula
(5) provides a fairly good estimate, we expect thatm1 ≈ N

3
also approximates the stable regime in Internet well.
The following Theorem quantiÞes the stability in the

class RGU.
Theorem 7: For sufficiently large N and Þxed m, the

number of changed edges ∆N(m) in a random graph
Gp (N) with uniformly distributed link weights tends to
a Poisson distribution,

Pr [∆N(m) = k] ∼ e−E[∆N(m)]
(E [∆N(m)])

k

k!
(10)

where E [∆N(m)] = gN(m)−gN(m−1) and gN(m) is given
by (4) or approximately by (5).

Proof: Previously [12],[13] we have shown that the
shortest path tree from a source to an arbitrary node in the

random graph Gp (N) with uniformly (or exponentially)
distributed link weights, is a uniform recursive tree for large
N . In addition, the random variable for the number of
hops (the hopcount HN) from that source to an arbitrary
node tends, for large N , to a Poisson random variable with
mean E [HN ] ∼ logN + γ − 1, where γ is Euler�s constant
(γ = 0.5772156 . . .). Hence, ∆N(m) is the random variable
that counts the absolute value of the difference between
the hopcount HN(m) from the source to user m and the
hopcount HN(m−1) from the source to the user closest in
the tree to m, which we label by m− 1. Both users m and
m− 1 are not independent, nor the two random variables
HN(m) and HN(m− 1) are independent in general due to
possible overlap in their paths. If the shortest paths from

m-1

m

Root

A

B

D

Fig. 2. A sketch of a uniform recursive tree, where HN (m) = 3 and
HN (m−1) = 4 and the number of links in common is two (shown
in bold Root-A-B).

the root to each of the two users m and m − 1 overlap,
there always exists a node in the shortest path tree, say
node B as illustrated in Figure 2, that sees the partial
shortest paths from itself tom andm−1 as non-overlapping
and independent. Since the shortest path tree is a uniform
recursive tree, the subtree rooted at that node B (shown in
dotted line in Figure 2) is again a uniform recursive tree2.
With respect to B, the nodes m and m− 1 are uniformly
chosen. We denote the unknown number of nodes in that
subtree rooted at B by ν(m) ≤ N . We have that ν(m) ≤
ν(m−1) because by adding a group member, the size of the
subtree can only decrease. For large N and small m, ν(m)
is large such that the above mentioned asymptotic law of
the hopcount applies. If both m and N are large, ν(m) will
become too small for the asymptotic law to apply (a fact
illustrated by the simulations in sec. III). Thus, for Þxed
m and large N , this implies that ∆N(m) tends to Poisson
random variables with mean E [∆N(m)]. For any graph

2Recall that a uniform recursive tree possesses the property that
any new node N has equal probability to be attached to any of the
N − 1 node already in the tree.
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and any m and N applies relation (8). Since E [∆N(m)]
can be explicitly computed as (9), this completes the proof.

Remark that the proof can be extended to a general
topology. Assume for a certain class of graphs that the
pdf of the hopcount Pr [HN = k] and the multicast effi-
ciency gN(m) can be computed for all sizes N . The subtree
rooted at B is again a shortest path tree in a subcluster
of size ν(m), which is an unknown random variable. The
argument similar as the one in the proof above shows that

Pr [∆N(m) = k] = Pr
£
Hν(m) = k

¤
This argument implicitly assumes that all multicast users
are uniformly distributed over the graph. By the law of
total probability,

Pr
£
Hν(m) = k

¤
=

NX
n=1

Pr
£
Hν(m) = k|ν(m) = n

¤
Pr [ν(m) = n]

=

NX
n=1

Pr [Hn = k] Pr [ν(m) = n]

which, unfortunately shows that the pdf of ν(m) is re-
quired to specify Pr [∆N(m) = k]. However, we can pro-
ceed further in an approximate way by replacing the
unknown random variable ν(m) by its best estimate,
E [ν(m)]. In that approximation, the average size E [ν(m)]
of the shortest path subtree rooted at B can be speciÞed,
at least in principle, with the use of (8). Indeed, since
E
£
HE[ν(m)]

¤
=
PE[ν(m)]−1
k=1 kPr

£
HE[ν(m)] = k

¤
, by equat-

ing
E
£
HE[ν(m)]

¤
= gN(m)− gN(m− 1)

a relation in one unknown E [ν(m)] is found and can be
solved for E [ν(m)]. In conclusion, we end up with the
approximation

Pr [∆N(m) = k] ≈ Pr
£
HE[ν(m)] = k

¤
which roughly demonstrates that, in general, Pr [∆N(m) = k]
is likely related to the hopcount distribution in that certain
class of graphs.
Unfortunately, for very few types of graphs, both the pdf

Pr [HN = k] and the multicast gain gN(m) can be com-
puted. This fact augments the value of Theorem 7, al-
though the class RGU is not a good model for the graph
of the Internet. Fortunately, the shortest path tree de-
duced from that class seems a reasonable approximation (as
shown in [13]) and sufficient to provide Þrst order estimates.
In any case, we believe its value outweighs simulation re-
sults. Moreover, its relatively simple analytic character is
desirable in modeling problems.

III. Simulation Results.

The main goal of the simulations is to verify the qual-
ity of the asymptotic result in Theorem 7. In particular,
section III-A is devoted entirely to that purpose. In sec-
tion III-B, results for the Steiner tree on the same type of

multicast group size m
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Fig. 3. SPT:The mean and variance of ∆100.

graphs for the class RGU are presented and compared to
those of the corresponding shortest path tree.
In order to anticipate frequently received criticism about

the class RGU, the value of the results only applies to this
class RGU and no attempt is made to correlate these results
to the current Internet, although the previous section did
so. The main reasons are as follows:
1. The topology of the Internet is currently not sufficiently
known to categorize the Internet as a type or an instance
of a class of graphs. The Internet is most likely best seen
as an organism changing over time; there does not exist a
Þxed Internet topology and, hence, a class speciÞcation is
desirable, in particular for simulations. There are measure-
ments (on a part) of the Internet that show that the Inter-
net graph is sparse (low link density p) and that the distri-
bution of the degrees (number of links per node/router) is
likely polynomially distributed with exponent close to -2.2
(see. e.g. [9]). Unfortunately, these measurements only re-
veal a part of what we need to know (e.g. Are there large
subgraphs in the Internet that are planar? Is the Inter-
net clearly hierarchically structured? Is there a relation to
the structure of the autonomous domains (when collapsed
in a single point) and the structure inside an autonomous
domain?) And many more of such questions can be posed.
2. For any routing problem, in addition to the network
topology, we need also knowledge about the link weight
distribution. Older systems are more likely to deÞne all
links with unit weight (w = 1). More recently, it makes
sense to distinguish between a satellite link, a large band-
width link and a smaller, or legacy link. Hence, not all link
weights will be equal to w = 1.
Even if more realistic topology generators (such as e.g.

gt-itm [17]) are used, the second problem of the link distri-
butions will be debatable. Moreover, the link weight dis-
tribution is equally important as the topology of the graph
itself. Although it is believed that Waxman graphs [15]
represent communication networks in a more realistic way,
it has been demonstrated in [13] and [18] that there is no
signiÞcant difference in the hopcount of the shortest path in
these two families of graphs, provided the link weight dis-
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multicast group size m
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Fig. 4. SPT: The mean and the variance of ∆200

tribution is uniformly or exponentially distributed. It has
been shown in [13] that for N large enough (in practice
N > 50), the dependency of the hopcount of the shortest
path on the link density p (i.e. the number of links in the
graph) becomes insigniÞcantly small. Hence, by attaching
a certain weight to a link, the speciÞc details of the under-
lying topology may be shielded (or become irrelevant) in a
routing problem.
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Fig. 5. SPT: Pdf Pr [∆N = k] for N = 100 and m < N/3

A. The shortest path tree

We conÞne ourselves to graphs of the class RGU with
N ≥ 100 and with link density p = 0.2. For each graph
of N nodes, we deÞne the number of multicast users in
the network, and the source node. For each N and p,
105 topologies are generated randomly. The connectivity
is tested using the Prim�s minimum spanning tree algo-
rithm [16]. Only if the generated topology is connected, m
nodes out of N − 1 (the node number one was deÞned as a
source node) are uniformly chosen, and the shortest path
tree is computed using a modiÞcation of Dijkstra�s algo-
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Fig. 6. SPT: Pdf Pr [∆N = k] for N = 100 and m > N/3

rithm. The number of edges in the tree was computed as
well as the number of edges in the tree that interconnects
one (uniformly chosen) multicast user less. The difference
of those two values was stored in a histogram, from which
the probability density function was deduced, and simulta-
neously also the mean E[∆N ] and the variance var[∆N ] of
the number of changed edges. These two variables (E[∆N ]
and var[∆N ]) are plotted as a function of the multicast
group size m, for three different values of N (100, 200 re-
spectively) on Figures 3 and 4.
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Fig. 7. SPT: Pdf Pr [∆N = k] for N = 200 and m < N/3

However, for larger values ofN , this simulation process is
time consuming, and not efficient. Therefore, for N larger
than 500, we used a Markov discovery process to Þnd the
shortest paths from the source node to the other multicast
group members. The Markov discovery process has been
explained in detail in [13]. The Markov discovery process
allows us to compute the shortest path tree very efficiently
in large graphs (even up to 105 nodes) of the class RGU.
We observe that the mean E[∆N ] determined via the

simulations, and the mean E[∆N ] computed by (9) are
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Fig. 8. SPT: Pdf Pr [∆N = k] for N = 200 and m > N/3

almost identical. Another important observation is that
there is an area where the mean E[∆N ] and the variance
var[∆N ] tend to each other. Since this is a property of the
well-known Poisson distribution, we are led to the conclu-
sion that the probability distribution function of the num-
ber of changed edges ∆N is very likely a Poisson distribu-
tion. In Figures 5 to 8, simulation results together with the
Poisson law (10) are plotted in the dotted and the solid line
respectively, as a function of the number of changed edges,
with the multicast group size as a parameter.
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Fig. 9. SPT: Pdf Pr [∆N = k] for N = 1000 and m < N/3

Figures 5 to 8 show that for m < N
3 (equivalent to

E[∆N ] > 1), the probability distribution function is re-
markably well described by the Poisson distribution. Form
> N

3 , the noticeable differences between the mean E[∆N ]
and the variance var[∆N ] appear, and there are signiÞcant
deviations of the probability distribution function from the
Poisson distribution. The explanation is that the size ν(m)
of the subtree rooted at B as illustrated in Figure 2, be-
comes too small to justify a Poisson law for the hopcount
in that subtree. But, as we have already explained in the
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section II-B, if the average number of changed links is less
than one, the multicast tree can be considered as stable.
Figure 9 and 10 represent results obtained from the

Markov discovery process, for N = 1000. These Figures
show that, for N = 1000, the probability distribution func-
tion matches the Poisson distribution (10) even for larger
values of m.
Finally, the effect of the link weight distribution on the

number of changed branches ∆N in the shortest path tree
is illustrated in Figure 11. For graphs of the class Gp(N),
this Figure 11 compares the pdf Pr [∆N = k] obtained with
uniformly (or exponentially) distributed and with constant
(w = 1) link weights. Earlier in [13], it is shown that, for
all link weights equal in Gp(N), the probability that the
hopcount exceeds 2 hops precisely equals

Pr [HN > 2] = (1− p)
£
1− p2¤N−2

and very rapidly decreases with N for all link densities
p > 1√

N
. This phenomenon is also observed in the behavior

of ∆N in Figure 11 and supports the generalization of the
Poisson law (10) - which is deduced for uniformly (or expo-
nentially) distributed link weights - that Pr [∆N(m) = k] is
reasonably well approximated by Pr

£
HE[ν(m)] = k

¤
.

Figure 11 also seems to indicate that less variability in
the link weight distribution amounts to a higher stability of
the shortest path multicast tree. Although concluded from
the class Gp(N), similar simulations with more realistic
topologies generated by gt-itm [17] (transit-stub method)
conÞrm this stable shortest path tree behavior.
In conclusion, the simulation results indicate that, in

spite of the applicability of Theorem 7 to an asymptotic
regime (large N and Þxed m), the law (10) seems to have
a wider validity region. This feature, also previously ob-
served in [19], reßects a robustness property of the Poisson
law, that may be associated with almost sure behavior.

B. The Steiner tree

In this subsection we will present corresponding results
obtained for the Steiner trees. The simulation process is
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Fig. 11. SPT: Comparison of the pdf Pr [∆100 = k] in the class
G0.2(100) with uniformly distributed link weights (dotted line)
and all link weights w = 1 (full line).
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Fig. 12. MST: Pdf Pr [∆N = k] for N = 10 (α = 0.2)

similar to the one used for generating the shortest path
tree. Again we performed simulations in the class RGU.We
generated 105 random graphs of that class RGU. In each
graph, m multicast group members are chosen uniformly
out of the N possible nodes. Depending on m, the Steiner
tree [20] is generated using different algorithms. Form = 2,
the minimum Steiner tree (MST) problem reduces to the
computation of the shortest path between those two users.
If m = N , the MST is actually the (complete) minimum
spanning tree, and is computed with the Prim algorithm.
For 2 < m < N , the MST problem belongs to the class
of hard NP-complete problems. Certain reductions [20] in
the topology decrease the number of nodes and links to a
reduced graph, and increase the speed of simulations. In
spite of the implemented reductions, the simulation pro-
cess is extremely time consuming for large N . Therefore,
we conÞne ourselves to graphs where N is not larger than
20. In each graph, the MST is computed for m an m − 1
members of the multicast group. The difference ∆N in the

number of the links forming these trees was stored in a his-
togram, from which the probability density function was
deduced.
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Fig. 13. MST: Pdf Pr [∆N = k] for N = 10 (α = 0.5)

B.1 Inßuence of the link weight distribution.

For the class of Gp(N) with various polynomial link
weight distributions speciÞed by the power exponent α,

Pr [w ≤ x] = xα10≤x≤1 + 1x≥1
where 1x is the indicator function3, we have simulated
the pdf Pr [∆10 = k] as shown in Figure 12 to 17 for
a = 0.2, 0, 5, 1, 2, 5,∞. The class RGU corresponds to
α = 1 and the last case (α = ∞) corresponds to w = 1
everywhere.
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Fig. 14. MST: Pdf Pr [∆N = k]for N = 10 (α = 1)

The Þrst observation from these Figures is that the pdf
Pr [∆10 = k] appears to be independent of the link prob-
ability p for α ≤ 1. Second, the larger x = m

N , the more
correlation there is in the Steiner tree which is reßected
by oscillatory behavior of the probability density function.

3The indicator function 1x equals 1 if the condition x is true, oth-
erwise it is zero.
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Third, these oscillations are more pronounced for increas-
ing power exponents α.
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Fig. 15. MST: Pdf Pr [∆N = k] for N = 10 (α = 2)

If the power exponent α is small (but α > 0), var [w] =
α

(α+2)(α+1)2 is relatively large (with a maximum for α =
√
5−1
2 which is the �golden number�) whileE [w] = α

α+1 is
small. This variation implies the existence of smaller link
weights that will play a dominant role in the Steiner tree.
Since the Steiner tree is a minimum link weight tree, the
links with smaller weights will more likely be included in
both the Steiner tree with m and m − 1 multicast users.
This will lead to a reasonable stable situation which is sim-
ilar to the shortest path tree dynamics. The larger part of
the tree will not change if a multicast user leaves or joins.
The number of changed branches ∆N in the Steiner tree
is very unlikely to be smaller than in the corresponding
shortest path tree because by choosing a longer hop path,
it may be possible to achieve a lower total weight of the
tree. As a second implication of small α, the link weights
have a thinning effect on the topology and overshadow the
inßuence of the link density p: even if there is a link, it is
the link weight that determines the importance of that link
especially in shortest link weight problems. This explains
the negligible effect of p as observed in Figure 12, 13 and
14.
When α is large, var [w] → 0 and E [w] → 1. Let us

consider the limit case of α → ∞. All links are equally
important and, hence, the effect of the topology quanti-
Þed by the link density p is important. If p → 1, then
Gp(N) → KN and the behavior of ∆N in the complete
graph KN with w = 1 is readily analyzed. Any Steiner
tree s(m) in KN connecting m multicast users consists of
precisely m − 1 links while the total link weight of that
tree also equals m−1. Moreover, there exists a large num-
ber of different Steiner trees. In particular, the number
of different minimum spanning trees or s(N) trees in KN
is precisely (N − 1)!. The number of changed branches
∆N consists of the total number of branches in s(m) and
s(m− 1) minus the 2 times the number Lc of links in com-
mon. Hence, ∆N = 2m − 3 − 2Lc or ∆N is always odd,
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Fig. 16. MST: Pdf Pr [∆N = k] for N = 10 (α = 5)

which explains the oscillatory behavior between odd and
even values for ∆N in Figures 16 and 17, especially for p
high. The stability of these Steiner trees is as worse as can
be: the Steiner tree s(m) in KN may consist of entirely
different branches from those of the Steiner s(m − 1) as
exhibited by the wild oscillations in Figure 17.
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Fig. 17. MST: Pdf Pr [∆N = k] for N = 10 (α =∞)

In conclusion, the simulations have shown that the link
weight distribution has profound inßuence on the stability
of the Steiner tree. The more links are equal (equivalent
to α large), the higher the instability. If more links have
different link weights, the more stable the Steiner tree is.
Whereas the underlying topology is decisive in the former,
it plays hardly a role in the latter situation. Thus, the more
the link weight structure of a network is heterogeneous, the
more healthy for the stability of the Steiner trees. Recall
the opposite behavior for the shortest path tree as illus-
trated in Figure 11.

B.2 Inßuence of the size N of the graph.

If we compare the results for the pdf obtained for N = 10
andN = 20 in the class RGU as illustrated in Figure 18, we
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observe that the probability density function for N = 10
and N = 20 match each other well for x = m

N > 0.7.

the number of changed edges k

0 2 4 6 8 10 12 14 16 18

Pr
[∆

N �
=k

]

0.0001

0.001

0.01

0.1

1

x=0.3 (N=10)
x=0.3 (N=20)
x=0.5 (N=10)
x=0.5 (N=20)
x=0.7 (N=10)
x=0.7 (N=20)
x=0.9 (N=10)
x=0.9 (N=20)

p=0.6

Fig. 18. MST: Pdf Pr [∆N = k] for N = 10 and N = 20

The mean E[∆N ] and the variance var[∆N ] were also
computed and plotted as a function of the ratio x = m

N in
Figure 19. We observe for the class RGU (α = 1) that the
mean value seems independent of the number of nodes in
the network, although the variances differ.
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Fig. 19. MST: Mean and variance of ∆N for N = 10 and N = 20)

B.3 Comparison of Steiner and shortest path tree.

In order to compare the stability of the Shortest path
tree (SPT) and the Minimum Steiner tree (MST) in the
class RGU, we have plotted in Figures 20 and 21, the prob-
ability density functions of changed number of edges ∆N
for N = 10 and N = 20 nodes, and in Figures 22 and 23
the mean value and the variance of these pdfs. From these
Figures, the following observations can be made: (A) The
maximum number of changed edges ∆N in SPT does not
increase with the increase ofN as fast as for the Steiner tree
(MST). This phenomenon has been explained previously:
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Fig. 20. Comparison SPT and MST (N = 10)

the minimization of the weight of the total tree forces the
Steiner tree to include longer hop paths if the sum of their
link weights is smaller. (B) The pdf of ∆N for the Steiner
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Fig. 21. Comparison SPT and MST (N = 20)

tree possesses a larger tail which agrees with the common
intuition that Steiner trees are less stable than shortest
path trees. (C) The larger tail for the Steiner tree also
causes that the mean E [∆N ] of MST is larger than that of
the SPT and similarly for the variance. (D) The more re-
markable observation is that the mean E [∆N ] for N = 10
and N = 20 in both MST and SPT, hardly changes with
N for nearly all value of x = m

N . Most likely, for RGU or
α = 1, the dynamics of the Steiner tree resembles those
of the SPT as argued above. The equality of E [∆N ] and
var [∆N ] in SPT follows from the Poisson law (10).

IV. Conclusion.

The stability of both the shortest path tree (SPT) and
the Steiner tree (MST) has been quantiÞed for the class
RGU. The Poisson law (10) for the number of changed
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Fig. 23. Variance of ∆N in MST and SPT (N = 10, 20)

edges ∆N in SPT, has been proven mathematically for
the class RGU, while simulation results point towards a
larger applicability of the Poisson law than the asymptotic
regime. In addition, we have argued that similar laws as
the Poisson law for the class RGU can be obtained for a
general topology (including that of the Internet), provided
both the hopcount distribution Pr [HN = k] and the mul-
ticast efficiency gN(m) are known. Hence, the stability (in
our setting) of the shortest path tree problem may be re-
garded in principle as approximately solved.
The behavior of the Steiner trees is not entirely under-

stood and requires further analysis. Especially, for largeN ,
it would be interesting to Þnd the scaling laws of the Steiner
tree as well as the tail behavior. Apart from large network
sizes N , the simulations show that the link weight distribu-
tion determines the stability of the Steiner tree problem. If
the majority of the links is differently weighted, the stabil-
ity of the Steiner tree resembles that of the shortest path
tree. The other extreme, where most link weights are equal,
leads to large instabilities reßected by wild oscillations in

the corresponding pdf Pr [∆N = k]. At last, the stability
of the Steiner tree is in most situations worse than that of
the corresponding shortest path tree. Mainly because the
departure or arrival of a multicast member may cause other
branches to be included in the Steiner tree (to achieve an
overall minimum in the sum of the weights) than just the
branches of the shortest path towards the subtree rooted
at B (as deÞned in Figure 2).
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