
Real-time Model and Convergence Time of BGP
Davor Obradovic

Abstract—BGP allows routers to use general preference policies
for route selection. This paper studies the impact of these policies
on convergence time. We first describe a real-time model of BGP.
We then state and prove a general theorem providing an upper
bound on convergence time. Finally, we show how to the use the
theorem to prove convergence and estimate convergence time in
three case studies.

I. INTRODUCTION

BGP [1], [2] is the main inter-domain routing protocol to-
day. Unlike most of the intra-domain routing protocols, such
as RIP and OSPF, BGP routers can be configured to use in-
dependent and general preference policies for route selection.
Routers keep exchanging reachability information while trying
to maximize their local route preference. This process, called
convergence, continues until all routers agree on a stable set of
routes. Fast convergence is generally desired from most rout-
ing protocols. In the case of BGP, it has been shown that diverse
policies can interact in a way that increases convergence time
or even causes the system to diverge [3], [4].

This paper studies the impact of general preference policies
on convergence time. Section II reviews the formal model of
“timeless” BGP designed by Griffin et al. [4]. In Section III we
extend this model with some real-time information that enables
us to observe the evolution of the protocol in time. In Section IV
we use the real-time model to derive a fundamental theorem
about an upper bound on convergence time. Section V applies
the theorem to three case studies. Section VI concludes and
gives some future prospects.

II. “TIMELESS” MODEL OF BGP

We will study convergence on a formal model of BGP used
in [4], [5]. The model consists of two parts: the Stable Paths
Problem (SPP) and the Simple Path Vector Protocol (SPVP).
SPP provides a formal semantics for BGP policies, while SPVP
describes the protocol dynamics. SPVP is a distributed al-
gorithm that attempts to solve the Stable Paths Problem, just
like RIP and OSPF try to solve the Shortest Path Problem.
Since BGP allows routing policies that are more general than
“shortest-path-first”, the Stable Paths Problem will be a gener-
alization of the Shortest Paths Problem.

A network is represented as a simple undirected graph G =
(V,E), where V = {0, 1, . . . , n} is the set of nodes connected
by edges from E. Nodes represent the routers and edges rep-
resent BGP sessions between them. For a node u, its set of
peers is peers(u) = {v | {u, v} ∈ E}. We assume that there
is a single destination (node 0) to which all other nodes are
trying to establish paths. A path in G is a sequence of nodes

University of Pennsylvania, davor@saul.cis.upenn.edu

(vk vk−1 . . . v0), such that {vi, vi−1} ∈ E, for all i, 1 ≤ i ≤ k.
We will assume that there exists a a special empty path, de-
noted by ε, which will be used indicate the absence of any route
to the destination. Nonempty paths P = (v1 v2 . . . vk) and
Q = (w1 w2 . . . wm) can be concatenated in a natural way if
vk = w1. In that case, we define

PQ = (v1 v2 . . . vk w2 . . . wm).

For every path P , concatenation with the empty path produces
the empty path:

Pε = εP = ε.

A path is called simple if it does not contain multiple instances
of the same vertex. We will be consider only simple paths, since
BGP immediately discards paths which contain loops. For a
simple path P = (v1 v2 . . . vk) and any two of its nodes u = vl

and w = vm (l ≤ m), we denote by P [u . . . w] the correspond-
ing sub-path (vl vl+1 . . . vm). Each node v ∈ V − {0} has
the corresponding set of permitted paths from v to the desti-
nation, denoted by Pv . This is a subset of the set of all paths
from v to 0, since a node may consider certain paths as un-
acceptable. Let P = {Pv | v ∈ V − {0}} denote the set
of all permitted path sets. For each v ∈ V − {0}, there is a
ranking function λv : Pv → N. For P ∈ Pv , λv(P) de-
notes the degree of preference that the node v gives to the path
P . More preferable paths will have higher values of λv . Let
Λ = {λv | v ∈ V − {0}} stand for the set of all ranking func-
tions.

We say that a triple S = (G,P,Λ) is an instance of the Stable
Paths Problem (SPP) if the following holds:

(SP1) Empty path is permitted: ε ∈ Pv .
(SP2) Empty path is lowest ranked: λv(ε) = 0.
(SP3) Strictness: If λv(P1) = λv(P2), then either P1 = P2,

or P1 = (v u)P ′
1 and P2 = (v u)P ′

2 for some node u
(i.e. P1 and P2 are either equal or have the same next
hop).

(SP4) Simplicity: If P ∈ Pv , then P is a simple path (i.e. P
does not contain loops).

Let S = (G,P,Λ) be an instance of the SPP. Given a node u
and a set of paths W ⊆ Pu with distinct next hops, we define
the maximal path in W with respect to u to be

max(u,W) =
{

P ∈ W with max. λu(P), if W
= ∅
ε, otherwise.

A path assignment is a function π that maps each node u ∈ V to
a permitted path π(u) ∈ Pu. In the BGP terminology, path as-
signments correspond to Loc-RIB routing tables. Given a path
assignment π and a node u, we define the set of choices for u
as

choices(u, π) = {(u v)π(v) | {u, v} ∈ E} ∩ Pu.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

This is the set of one-hop extensions of the paths selected by
u’s neighbors. The path assignment π is stable at node u if u
has the optimal path among its choices:

π(u) = max(u, choices(u, π)).

The path assignment π is stable if it is stable at every node
u ∈ V . An SPP instance S = (G,P,Λ) is solvable if there
exists a stable path assignment π for S. We call every such
assignment a solution for S and write it as (P1, P2, . . . , Pn),
where π(u) = Pu. An instance of SPP may have zero, one or
more solutions. 1

We will now describe the Simple Path Vector Protocol
(SPVP). Each node maintains two data structures:

• rib(u) is u’s current path to the destination.
• rib in(u ⇐ w) denotes the path most recently advertised

by w to u.
Similarly as before, we define the set of path choices available
to u as

choices(u) = {(u w)rib in(u ⇐ w) | w ∈ peers(u)} ∩ Pu,

and the best choice as best(u) = max(u, choices(u)). Neigh-
boring nodes keep exchanging paths that they have currently
stored in the rib field. As the node u receives path advertise-
ments from its peers, it uses them to recompute the set of avail-
able paths choices(u). The node tries to maintain the best path
from that set stored in the field rib(u). Every once in a while,
the node recomputes its best path and notifies its peers in case
of a change. This may cause the peers to send further advertise-
ments to their peers, and so on. The process continues as long
as there are unprocessed advertisements.

Unprocessed advertisements are stored in reliable FIFO
queues at the receiving end. Each node has one such queue
for each peer—the queue where u stores advertisements from
its peer w is denoted by mq(u ⇐ w). A state of the proto-
col is defined by states of all the routers (denoted by S) and
contents of all the queues mq (denoted by Q). A router’s state
consists of the values of rib and rib in fields. Therefore, a pair
(S,Q) can be regarded as a global protocol state. The global
state changes when an event happens. There are two kinds of
events—receipt of a route (receive(v ⇐ u)) and recomputation
of the best route (recompute(u)). The first event simply stores
the received route in the appropriate rib in. The second event
recomputes the best route and notifies the neighbors in case it
changed. Precisely, these events change the global state in the
following way:

• receive(v ⇐ u):
rib in(v ⇐ u) := dequeue (mq(v ⇐ u)).

• recompute(u):
if rib(u)
= best(u) then {
rib(u) := best(u)
∀v ∈ peers(u). enqueue(mq(v ⇐ u), rib(u))
}

Function dequeue removes the front element of the queue and
returns it as the result. It signals an error if the queue is empty.

1See [4] for examples.

Function enqueue adds an element at the back of the queue. An
activation sequence is an arbitrary sequence of these events.
Each event modifies the global protocol state. Therefore, given
an initial state and a valid activation sequence, we can generate
the corresponding sequence of states (run of the protocol) that
describes the evolution of the system. An activation sequence
is valid with respect to the initial state (S0,Q0) if the following
holds when we run it on that initial state:

1) An event of the form receive(v ⇐ u) never happens
when mq(v ⇐ u) is empty.

2) Every route advertisement sent during a ‘recompute’
event is eventually received during the corresponding
‘receive’ event.

When we run SPVP from some initial state using a valid ac-
tivation sequence, the system exhibits either a convergent or a
divergent behavior. We say that the system converges if the
routes eventually stabilize (i.e. there is some point in time after
which rib fields do not change). Otherwise, rib fields perpetu-
ally change and we say that the system diverges. It is easy to
see that in the case of a convergent behavior, final routes form a
stable solution to the corresponding SPP. In that sense, SPVP is
a sound algorithm for solving SPP. However, it is not complete,
because there are configurations where solutions (i.e. stable
routes) exist, but SPVP is not guaranteed to find them. There
are also configurations where it is impossible to simultaneously
pick stable routes for all nodes (i.e the corresponding SPP is un-
solvable). SPVP necessarily diverges on such configurations.

Griffin, Shepherd and Wilfong [4] established a sufficient
condition for ensuring convergence. Their technique is based
on the notion of a dispute digraph, which can be constructed for
every SPP instance. Let S = (G,P,Λ) be an instance of SPP.
The corresponding dispute digraph is a directed graph whose
nodes are all permitted paths ({P | P ∈ Pv, v ∈ V }). There
are two types of arcs: transmission and dispute arcs. Suppose u
and v are peers.

• Transmission arcs: If P ∈ Pv and (u v)P ∈ Pu, then
there is a transmission arc P −→ (u v)P .

• Dispute arcs: Suppose that v has two available paths to the
destination: P and Q (P,Q ∈ Pv). Then u potentially
also has two paths: (u v)P and (u v)Q. Disputes arise
when u and v disagree on which path to use. Namely, if v
prefers P over Q, while u prefers (u v)Q over (u v)P , 2

then there is a dispute arc P −→ (u v)Q. The situation is
shown on Figure 1.

The major result proved in [4] states that convergence is guar-
anteed if the dispute digraph is acyclic.

III. REAL-TIME MODEL OF BGP

Ensuring convergence in practice is a hard problem. BGP is
designed to allow maximum flexibility in route preference poli-
cies. This makes it possible to set up a divergent BGP system
while completely respecting the protocol standard. The prob-
lem of divergence is studied in several papers [3], [4], [5], [6],
[7]. We will focus our attention on a different problem—the
length of the convergence process. While conflicting policies

2Or u simply rejects (u v)P , while accepting (u v)Q

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

vu 0

P

Q

P (u v)Q

Fig. 1. A dispute between u and v

that would cause divergence are theoretically possible, many
practitioners claim that such policies are rarely (if ever) used
in practice. However, even then, it is important to know how
much time would convergence take. Just the fact that routes
would eventually stabilize does not provide much assurance to
the users. However, knowing that convergence would happen
in, say, one hour, as opposed to one day is a more valuable in-
formation. Hence, our main goal would be establishing upper
bounds on convergence time of SPVP.

As the first step, we need to extend the model with real-
time. We will do that by associating, with each edge, an upper
bound on route propagation time across that edge. Formally,
instead of representing the network with an ordinary graph
G = (V,E), we will use a weighted graph G′ = (V,E, d),
where d : V × V ⇀ R (called delay) is a strictly positive par-
tial real function such that d(u, v) is defined if and only (u, v)
is an edge. Delay function constrains the speed of route prop-
agation in the following intuitive sense: if u changes its route
at time t, v should find out about that change and appropriately
adjust its route by the time t+d(u, v). Thus augmented instance
S′ = (G′,P,Λ) is called an instance of TSPP (Timed SPP). 3

Notice that establishing any kind of upper bound on conver-
gence time requires us to have finite edge delays. Indeed, if an
edge (u, v) can have unbounded delay, then v can indefinitely
“ignore” the route advertisements from u and hence indefinitely
postpone the convergence. This is why edge delays in some
sense represent the minimal information that one needs to have
in order to bound convergence time.

As the next step, we need to extend the notion of activa-
tion sequences to include real-time. We do that by simply
attaching time stamps to the events. Formally, we say that
a timed activation sequence is any finite or infinite sequence
of pairs (ei, ti)i=1,2,... where each ei is either of the form
recompute(u) or of the form receive(v ⇐ u) and where the
sequence of time stamps (ti)i is strictly increasing. We want
to consider as valid only those timed activation sequences that
respect the constraints imposed by the delay function:

A timed activation sequence (ei, ti)i is valid with respect to
an initial state (S0,Q0) if the corresponding “untimed” activa-
tion sequence (ei)i is valid with respect to the same initial state
and the following condition holds:

• For every i and every pair of peers (u, v), if ei =
recompute(u) is an event that causes a route P to be ad-
vertised (i.e. P = best(u)
= rib(u)), then there exist j
and k (i < j < k) with the following properties:

1) ej = receive(v ⇐ u) is an event that puts P into
rib in(v ⇐ u).

2) ek = recompute(v).
3We assume that all the conditions for SPP instances continue to hold.

3) ti < tj < tk ≤ ti + d(u, v).
This condition precisely expresses the intended intuition of

edge delays. Notice that ti is the time when u changes its route,
tj is the time when its peer v receives the new route and tk is the
time when v finally recomputes the best route. The condition
simply requires that the time between ti and tk be bounded by
d(u, v).

When measuring convergence time, we are interested in the
elapsed time since the first event. Because of that, it is conve-
nient to have t1 = 0. In addition to that, the destination node
0 should initially announce itself by advertising the trivial path
(0) to its neighbors. In our model, this is achieved by having
e1 = recompute(0). Timed activation sequences which sat-
isfy these two conditions are called initialized timed activation
sequences. We will study convergence time by looking at pro-
tocol runs (i.e. state sequences) generated by valid initialized
timed activation sequences.

IV. CONVERGENCE TIME OF SPVP

In section II we described how dispute digraphs can be used
to prove convergence of SPVP. Here we show how they can be
extended and used to analyze convergence time.

Given a TSPP instance S′ = ((V,E, d),P,Λ), its timed dis-
pute digraph T DD(S) is a weighted directed graph which is
structurally identical to the corresponding dispute digraph. An
arc from P = (u . . .) to Q = (v . . .) in the dispute digraph has
the weight of ∆(P,Q) = d(u, v).

A timed dispute digraph is therefore a weighted dispute di-
graph, where weights correspond to certain edge delays. What
is the intuition behind assigning weights in this way? Nodes u
and v are peers and it is therefore possible that u adopts or re-
jects the path P at some time tu, which causes v to adopt or re-
ject the path Q at some later time tv. This “chain reaction” can
keep spreading further. Intuitively, ∆(P,Q) is meant to repre-
sent a bound on the “reaction time” between these two events.
The first event (at time tu) triggers the second one (at time tv).
So, ∆(P,Q) should represent an upper bound on tv − tu. No-
tice, however, that we have already introduced d(u, v) to repre-
sent exactly this bound.

We will now proceed towards a proof of the key lemma that
describes the fundamental connection between the timed dis-
pute digraph and timing of the events. As a notational conve-
nience, for two paths P,Q ∈ Pu, we will use notation P < Q
to denote the fact λu(P) < λu(Q). Similarly, P ≤ Q denotes
the fact λu(P) ≤ λu(Q).

Lemma 1—Real-time correspondence: Let S be a TSPP in-
stance and T DD(S) its timed dispute digraph. If we run SPVP
on S using a valid initialized timed activation sequence (ei, ti)i,
then the following holds for any permitted path P : If a node

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

goes up 4 to P or goes down 5 from P at time t, then there
exists a path P+ with the following properties:

1) P ≤ P+.
2) There is a path in T DD(S) from (0) to P+ of the length

at least t.

Before the proof, let us briefly discuss the significance of the
lemma. The lemma says that, when real-time constraints are
respected, if a node changes its route at time t, there must be a
path in the timed dispute digraph of the length at least t. More-
over, that path starts with the node (0). 6 We say that diameter
of a given timed dispute digraph is the length of the longest path
starting at (0). Therefore, the lemma implies that no node can
change its route after the time τ , where τ is the diameter of the
timed dispute digraph. This means that the system necessarily
stabilizes by the time τ :

Theorem 2—Bound on SPVP convergence time: Let S be a
TSPP instance whose timed dispute digraph has the diameter τ .
SPVP is then guaranteed to converge in time τ on S.

This theorem gives a general bound on convergence time of
SPVP. Notice that if the timed dispute digraph has a cycle which
is reachable from (0), its diameter is infinite and we do not have
a bound on convergence time. We now present the proof of
Lemma 1.

Proof: Since nodes can change their paths only at times
ti, we can prove the lemma by induction on i. Formally, we
will prove the following statement by induction on i:

∀i ∀u ∀P.
u goes (up to)/(down from) P at time ti ⇒ ∃ P+ . . .

Assume first i = 1. Since the activation sequence is initialized,
we know that t1 = 0 and e1 = recompute(0). Therefore, only
node 0 can be active at this time and P must be (0). But then
we can take the empty path starting at (0) as a path of length
t1 = 0 from (0) to P .

Now assume that the statement holds for all i < k, where
k > 1. Let u be the node that goes up to P or down from
P at time tk. Since tk > 0 (because k > 1), we know that
u
= 0, because node 0 does not change its path after the initial
moment. This means that P = (u v . . .) for some neighbor v
of u. There are two possible cases:

Case 1: u goes up to P at time tk.
Then, because of the definition of valid activation sequences,
we conclude that v must have advertised the path P [v . . . 0] at
some time t′ ≥ tk − d(v, u) (the delay from v advertising the
route till u adopting it is bounded by d(v, u)). There are two
subcases:

• Case 1a: v went up to P [v . . . 0] at time t′.
Since t′ < tk, this means that t′ = ti for some i < k. By
the induction hypothesis, we know that some path R ≥
P [v . . . 0] is reachable in T DD(S) from (0) by a path of

4We say that a node goes up to P if it switches to P from some less preferred
path Q.

5We say that a node goes down from P if it switches from P to some less
preferred path Q.

6Recall that nodes of the timed dispute digraph are paths of the original graph.

the length at least t′. There are two possible subcases with
respect to u’s preference:

– Case P ≤ (u v)R. Since there is a transmission arc
from R to (u v)R with the weight d(v, u), we con-
clude that (u v)R is reachable by a path of the length
at least t′ + d(v, u) ≥ tk. Therefore, we can take
P+ := (u v)R. Notice that P ≤ P+ because of the
assumption of this subcase.

– Case (u v)R < P . In this case we have a dispute arc
from R to P with the weight d(v, u), so we conclude
that P is reachable by a path of the length at least
t′ + d(v, u) ≥ tk. Therefore, we can take P+ = P .

• Case 1b: v went down to P [v . . . 0] (from some path Q) at
time t′. As in case 1a, we conclude that t′ = ti for some
i < k. By the induction hypothesis, we know that there
exists a path Q+ ≥ Q, which is in T DD(S) reachable
from (0) by a path of the length at least t′. Also, since v
went down from Q, we know that

P [v . . . 0] ≤ Q ≤ Q+.

As before, there are two possible subcases with respect to
u’s preference:

– Case P ≤ (u v)Q+. Since there is a transmission
arc from Q+ to (u v)Q+ with the weight d(v, u), we
conclude that (u v)Q+ is reachable by a path of the
length at least t′ + d(v, u) ≥ tk. Therefore, we can
take P+ := (u v)Q+.

– Case (u v)Q+ < P . In this case, we have a dis-
pute arc from Q+ to P with the weight d(v, u), so we
conclude that P is reachable by a path of the length
at least t′ + d(v, u) ≥ tk. Therefore, we can take
P+ := P .

Case 2: u goes down from P at time tk.
Then it must be the case that v switched from the route
P [v . . . 0] to some other route at some time t′ ≥ tk − d(v, u).
Indeed, if v had held P [v . . . 0] throughout the interval [tk −
d(v, u), tk], then u would not have gone down from P . Also, if
v had held routes different from P [v . . . 0] throughout the whole
interval, u could not have had P just before the time tk (u would
have learned some of those other routes, since the delay time is
bounded by d(v, u)).
There are two cases with respect to the direction in which v
moved:

• Case 2a: v went up to some path Q from P [v . . . 0] at time
t′. As before, we know that t′ = ti for some i < k. By the
induction hypothesis, we know that some path Q+ ≥ Q is
reachable from (0) by a path of the length at least t′. Also,
since v went up to Q, we know that

P [v . . . 0] ≤ Q ≤ Q+.

There are two possible subcases with respect to u’s prefer-
ence:

– Case P ≤ (u v)Q+. Since there is a transmission
arc from Q+ to (u v)Q+ with the weight d(v, u), we
conclude that (u v)Q+ is reachable by a path of the
length at least t′ + d(v, u) ≥ tk. Therefore, we can
take P+ := (u v)Q+.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

– Case (u v)Q+ < P . In this case, we have a dis-
pute arc from Q+ to P with the weight d(v, u), so we
conclude that P is reachable by a path of the length
at least t′ + d(v, u) ≥ tk. Therefore, we can take
P+ := P .

• Case 2b: v went down from P [v . . . 0] at time t′. As be-
fore, we know that t′ = ti for some i < k. By induction
hypothesis, we know that some path R ≥ P [v . . . 0] is
reachable in T DD(S) from (0) by a path of the length at
least t′. There are two possible cases with respect to u’s
preference:

– Case P ≤ (u v)R. Since there is a transmission arc
from R to (u v)R with the weight d(v, u), we con-
clude that (u v)R is reachable by a path of the length
at least t′ + d(v, u) ≥ tk. Therefore, we can take
P+ := (u v)R.

– Case (u v)R < P . In this case, we have a dispute arc
from R to P with the weight d(v, u), so we conclude
that P is reachable by a path of the length at least
t′ + d(v, u) ≥ tk. Therefore, we can take P+ := P .

V. APPLICATIONS

In this section we illustrate the power of Theorem 2 by ap-
plying it to three case studies:

• The first study shows how to derive convergence time
when “shortest-path-first” policies are used. In fact, we
prove a bound for more general delay-cost consistent poli-
cies.

• The second case study shows how to use Theorem 2 to
prove the earlier result by Griffin, Wilfong and Shepherd
about the convergence of “timeless” SPVP when the dis-
pute digraph is acyclic.

• The third case study analyzes Gao and Rexford’s proposal
for ensuring convergence of SPVP [6]. The proposal rep-
resents some of the current best practices in configuring
BGP policies. It uses the provider-customer hierarchy of
the Internet to restrict the preference functions and the flow
of advertisements in a way that results in provable conver-
gence. We use Theorem 2 to establish an upper bound on
convergence time for this case.

It is important to note that bounds on convergence time de-
rived in these studies can be used without explicitly computing
the timed dispute digraph. The most that is needed is topology
and delay information. This is essential for usefulness of the
results. Explicit computation of the dispute digraph is almost
never feasible—partly because of its size and partly because of
the often proprietary nature of BGP policies. Nevertheless, the
bounds are derived from Theorem 2, which explicitly uses the
diameter of the timed dispute digraph. Our case studies show
that diameter of the timed dispute digraph can often be calcu-
lated (or at least bounded) without explicitly constructing the
digraph.

A. Delay-cost Consistent Policies

One way to avoid inconsistent routing policies is to have the
routers agree on a common cost function which is used to assign

route preferences. This idea is presented in [4]. For a given
TSPP (or an SPP) instance, a cost function is a strictly positive
partial function c : V × V ⇀ R such that c(u, v) is defined
if and only if (u, v) is an edge. 7 Any cost function naturally
extends to paths—if P = (u1 u2 . . . uk) is a path, then we
define

c(P) :=
k−1∑
i=1

c(ui ui+1).

We say that S is consistent with the cost function c (shortly,
cost-consistent) if all routers prefer cheaper paths. Formally,
for every node u and every two paths P,Q ∈ Pu the following
holds:

c(P) < c(Q) ⇒ λu(Q) < λu(P).

For TSPP instances, we can also extend the delay function to
paths. For P = (u1 u2 . . . uk), we define

d(P) :=
2∑

i=k

d(ui ui−1).

Notice that the summation goes in the opposite direction from
the one used in the cost formula. The intuition behind this is that
delays bound the propagation time of advertisements that go
from the destination outwards, while cost is supposed to mea-
sure how expensive is to send traffic along the route towards the
destination.

It is natural to expect that delays will be reflected in the cost
function in the sense that routes with longer delays should be
considered more expensive for carrying traffic and vice-versa.
This is captured by the following condition about consistency
between delays and costs:

A TSPP instance S consistent with a cost function c is delay-
cost consistent if for every node u and every two paths P,Q ∈
Pu the following condition holds:

d(P) < d(Q) ⇒ c(P) < c(Q).

One way to achieve delay-cost consistency is, for instance,
by assigning costs according to the following rule:

c(u, v) = f(d(v, u)),

for some strictly increasing positive function f .
The following lemma establishes an upper bound on the

length of a path in the timed dispute digraph of a delay-cost
consistent instance. The bound is interesting in the sense that it
depends only on the last node of the path.

Lemma 3: Let S be a delay-cost consistent instance with the
cost function c. If Π = (0) → P1 → . . . → Pk is a path in
T DD(S), then its length is at most d(Pk).

Proof: Let L(.) denote the length function on paths in
T DD(S). We will prove the lemma by induction on k.

If k = 0, we have a trivial path Π = (0) which does not have
edges and hence L(Π) = 0 = d((0)).

Assume the statement is true for every path in T DD(S) with
less than m edges, for some m ≥ 1. Let Π = Π′ → Pm be

7The requirement for strict positivity can be weakened into the requirement
that c does not result in any non-positive cycles in the underlying graph [4].

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

a path in T DD(S) with m edges, where Π′ = (0) → P1 →
. . . → Pm−1 is its sub-path consisting of the first m− 1 edges.
Let us denote the first node of Pi by ui (i.e. Pi = (ui . . .)).
Then by the induction hypothesis, we know that

L(Π) = L(Π′) + ∆(Pm−1, Pm) ≤ d(Pm−1) + d(um−1, um).
(1)

There are two possible cases with respect to the nature of the
arc Pm−1 → Pm:

1) Pm−1 → Pm is a transmission arc. Then Pm =
(um um−1)Pm−1. By the definition of path delays we
have

d(Pm) = d(Pm−1) + d(um−1, um).

This is exactly the right-hand side of the equation 1,
which means that L(Π) ≤ d(Pm).

2) Pm−1 → Pm is a dispute arc. Then Pm =
(um um−1)Qm−1, where Qm−1 ≤ Pm−1. Because of
the cost consistency, we know that c(Pm−1) ≤ c(Qm−1).
Delay-consistency then implies that d(Pm−1) ≤
d(Qm−1). If we plug this into the right-hand side of the
equation 1, we get:

L(Π) ≤ d(Qm−1) + d(um−1, um) = L(Pm).

We can now derive an upper bound on convergence time:
Corollary 4—Conv. time for delay-cost consist. instances:

Let S be a delay-cost consistent TSPP instance with the
maximum path delay δ = max{d(P) | P ∈ Pu, u ∈ V }.
Then S converges in time δ.

Proof: Because of Lemma 3, the diameter of T DD(S) is
bounded by δ. But then Theorem 2 guarantees that S converges
in time δ.

As a special case of delay-cost consistent policies, we look
at shortest-path-first policies. BGP routers are often configured
to simply prefer routes with smaller number of hops. Formally,
we say that an SPP instance has shortest-path-first policies if it
is consistent with the cost function that assigns unit costs to all
edges:

c(u, v) = 1, for each edge (u, v).

The following theorem estimates convergence time for in-
stances with shortest-path-first policies:

Theorem 5—Conv. time for shortest-path-first policies:
Let S be a TSPP instance with shortest-path-first policies where
all edge delays are equal to ω. 8 Then S converges in time Dω,
where D is the length of the longest permitted path.

Proof: First notice that having all edge delays be equal
to ω yields a delay-cost consistent instance, since c(u, v) =
1
ωd(v, u) and consequently, c(P) = 1

ωd(P) for every path P .
The delay of a path P is equal to |P |·ω, where |P | is the number
of edges in P . Therefore, the maximum path delay will be Dω,
which by Corollary 4 implies that S converges in time Dω.

This theorem is due to Labovitz et al. [8], but here we derived
it as a special case of the more general Corollary 4 (which is
ultimately based on Theorem 2).

8If edge delays are different, we can take ω to be the largest edge delay.

B. Convergence of “timeless” SPVP

Recall the sufficient condition for convergence of the “time-
less” version of SPVP proved by T. Griffin, F. B. Shepherd and
G. Wilfong in [4]:

Theorem 6—Convergence of SPVP: If S is an SPP instance
whose dispute digraph is acyclic, then SPVP is guaranteed to
converge on S under any valid initialized activation sequence.

Proof: Theorem 2 is essentially a refinement of this the-
orem. We will use it to prove this “timeless” version by show-
ing that the timed protocol can simulate any scenario from the
timeless protocol by simply adding the timing information in a
consistent way.
Suppose we are given a valid initialized activation sequence
(ei)i=1,2,... for S. We first construct the corresponding TSPP
instance S′ from S by simply making all edge delays equal
to, say, 1. Then we use the activation sequence for S to con-
struct an equivalent valid initialized timed activation sequence
(ei, ti)i=1,2,... for S′ by appropriately adding the time stamps:

ti = 1− 1
2i−1

.

Notice that these sequences produce the same protocol runs,
since we did not change the order of events, but merely added
the time stamps. Because of that, in order to show conver-
gence under the original activation sequence, it suffices to show
a finite bound on convergence time for the timed activation se-
quence.

Since tj − ti < 1 for any j > i, we know that all edge delays
will be respected, so that (ei, ti)i really constitutes a valid timed
activation sequence. Also, since t1 = 0, the new sequence will
be initialized. Because of the assumed acyclicity of the dispute
digraph, the timed dispute digraph has a finite diameter. But
Theorem 2 then guarantees that the sequence (ei, ti)i converges
on S′.

C. Hierarchical SPVP

One approach for achieving convergence of SPVP (and BGP)
is described in [6] by L. Gao and J. Rexford. Their idea is
based on the provider-customer hierarchy of the Internet. This
hierarchy is used as a basis for configuration guidelines which,
if respected, guarantee convergence. Our goal is to estimate the
convergence time in this case.

To define the hierarchy, we place every BGP peering edge in
exactly one of the following two classes:

• Customer-provider edges exist between a customer and
a provider. The provider is typically a larger AS (Au-
tonomous System) that provides connectivity to the rest
of the Internet for the customer. Providers may have even
larger providers of their own and customers may have fur-
ther customers.

• Peer-to-peer edges exist between two AS’s of a compara-
ble size, who mutually agree to exchange traffic between
their respective customers. In particular, this means that
peer-to-peer edges can only be included in routes that go
from a (direct or indirect) customer of one peer to a (direct
or indirect) customer of the other peer.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

An instance of SPP which has this hierarchy is called a hier-
archical instance of SPP. We will view the customer-provider
edges as directed edges, oriented from the provider to the cus-
tomer. In that sense, they form a directed graph which we al-
ways assume to be acyclic. Peer-to-peer edges are naturally
undirected, since the peering relationship is symmetric. Fig-
ure 2 shows an example of this hierarchy. Customer-provider
edges are represented with full lines, while peering edges are
dashed.

AS1 AS2

AS6

AS3
AS4 AS5

Fig. 2. Hierarchical topology

We can assume that we have a single BGP router for ev-
ery AS. If r is a router, then provider(r), customer(r), and
peer(r) respectively denote the sets of (immediate) providers,
customers and peers of r. Let P = (r r1 r2 . . . rk) be a route
that r learns from another router. The notation next(P) is used
for the next hop router on P . In this case, next(P) = r1. All
of r’s routes can be classified into three categories based on the
next hop:

• Customer routes: {P | next(P) ∈ customer(r)}.
• Provider routes: {P | next(P) ∈ provider(r)}.
• Peer routes: {P | next(P) ∈ peer(r)}.
Convergence is assured by restricting two aspects of SPVP:

flow of advertisements and routing policies. Figure 3 shows
selective export rules that are used to restrict the flow of ad-
vertisements [9], [10]. The rules specify, for any given router,
which routes should be advertised to which neighbors.

Fig. 3. Selective export rules

Export to

Type

provider customer peer
prov. route NO YES NO
cust. route YES YES YES
peer route NO YES NO

The table says that no router should advertise its peer and
provider routes to other peers and providers. Selective export
rules impose a certain shape on the paths that can be produced:

A path (r1 r2 . . . rk) is said to be valley-free if every
provider-to-customer or a peer-to-peer edge can only be fol-
lowed by a provider-to-customer edge. Formally, if for some
1 < i < k, (ri−1, ri) is a provider-to-customer or a peer-to-
peer edge, then (ri, ri+1) is a provider-to-customer edge.

In other words, a valley-free path consists of a sequence of
zero or more customer-to-provider edges, followed by zero or

one peer-to-peer edge, followed by a sequence of zero or more
provider-to-customer edges.

In order to guarantee convergence, we need to supplement
selective export rules by guidelines for configuring routing poli-
cies. Policy guidelines restrict the set of legal preference func-
tions. The following basic policy guideline is suggested in [6]:

Guideline A: Each router should strictly prefer customer
routes over non-customer routes.

Notice that this guideline is local, which means that each
router can follow it independently of other routers, without dis-
closing its policies.

It turns out that guideline A, combined with selective ex-
port rules, suffices to guarantee convergence of SPVP. This was
proved in [6].

In order to calculate convergence time by using Theorem 2,
we need to analyze the shape of the dispute digraph. In par-
ticular, our analysis will be based on estimating the length of
the paths in the dispute digraph. The first step is the following
lemma:

Lemma 7: Let S be a hierarchical instance of SPP. Let P =
eP ′ and Q = fQ′ be permitted paths whose first edges are e
and f respectively. Assume that P → Q is a (dispute or trans-
mission) arc in the dispute digraph for S. Then the following
holds: If f is a provider-to-customer or a peer-to-peer edge,
then e is a provider-to-customer edge.

Proof: Let f = (u v). There are two possible cases,
corresponding to the type of the arc P → Q:

1) P → Q is a transmission arc. Therefore, Q′ = P . There
are three subcases with respect to the edge f :

• f = (u v) is a customer-to-provider edge. We do not
have to prove anything in this case.

• f = (u v) is a provider-to-customer edge. Because
the transmission arc P → (u v)P exists, v can ad-
vertise P to its provider u. Selective export rules in
that case guarantee that P is a customer route, which
means that e is a provider-to-customer edge.

• f = (u v) is a peer-to-peer edge. Again, since we
have a transmission arc P → (u v)P , v can advertise
P to its peer u. But then P must be a customer route,
which means that e is a provider-to-customer edge.

2) P → (u v)Q′ is a dispute arc. There are, again, three
subcases with respect to the edge f :

• f = (u v) is a customer-to-provider edge. Again, we
do not have to prove anything in this case.

• f = (u v) is a provider-to-customer edge. Since v
can advertise Q′ to its provider u (u would otherwise
have no way of learning Q = (u v)Q′, so we could
delete Q from the dispute digraph), Q′ must be a cus-
tomer route. However, since P → (u v)Q′ is a dis-
pute arc, v prefers P over Q′. In that case P must be
a customer route as well, since a node can not prefer
a non-customer route over a customer route (Guide-
line A). Therefore, e is a provider-to-customer edge.

• f = (u v) is a provider-to-customer edge. Again,
since v can advertise Q′ to its peer u, Q′ must be a
customer route. However, because there is a dispute,
v prefers P over Q′, so P must be a customer route

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

as well. Therefore, e is a provider-to-customer edge.

The claim about edges e and f from the lemma matches ex-
actly the defining condition for valley-free paths. If we use that
fact and inductively extend the lemma from arcs to arbitrary
paths in the dispute digraph, we immediately get the following
corollary:

Corollary 8: Let S be a hierarchical instance of SPP. Let
P1 = e1P

′
1, P2 = e2P2, . . . , Pk = ekP

′
k be permit-

ted paths, such that the dispute digraph for S contains the
path P1 → P2 → . . . → Pk. Then the sequence of edges
ekek−1 . . . e1 represents a valley-free path in S.

Let us try to interpret the result informally. Given a path in
the dispute digraph, we can extract the first edges of all the all
the nodes along that path (remember that nodes in the dispute
digraph are paths). These edges, considered in the reverse or-
der, will themselves form a path between some two routers. The
corollary says that every path obtained this way will be valley-
free. It is easy to see that with n routers, every valley-free path
will contain at most 2n − 1 edges (at most n − 1 customer-
to-provider edges followed by at most one peer-to-peer edge
followed by at most n− 1 provider-to-customer edges). There-
fore, the corollary implies that the length of every path in the
dispute digraph is less than 2n:

Corollary 9: If S is a hierarchical instance of SPP, every path
in DD(S) has the length less than 2n.

When delay constraints are added to hierarchical SPP in-
stances, we talk about hierarchical TSPP instances. As a di-
rect consequence of the Corollary 9, we derive the following
theorem which gives an upper bound on convergence time:

Theorem 10—Convergence time of hierarchical SPVP:
Let S be a hierarchical TSPP instance with n routers and let
M = max{d(u, v) | (u, v) is an edge} be the maximum edge
delay. Then SPVP converges on S in time 2Mn.

Proof: Because of Corollary 9, the diameter of T DD(S)
is bounded by 2Mn, so Theorem 2 guarantees convergence in
time 2Mn.

VI. CONCLUSIONS

The work presented in this paper has two major points of in-
terest: real-time model of BGP and a general theorem providing
an upper bound on convergence time.

Previous attempts at analyzing BGP convergence time [8],
[11] assumed that all routers use shortest-path-first policies.
While this is a valid assumption in many practical instances,
BGP standard [2] specifically allows more general preference
policies which do not fall in this category.

On the other hand, the authors who did study BGP with gen-
eral preference policies [3], [4], [5], [6] focused solely on con-
vergence vs. divergence, rather than on convergence time.

Our results in some sense unify these two research directions.
As we show in Section V, our Theorem 2 can be used to esti-
mate convergence time as well as to purely prove convergence.
It is important to note that, although Theorem 2 is based on
a rather abstract notion of a timed dispute digraph, we often
do not need to compute the graph in order to use the theorem.
Probably the best illustration of this fact is Theorem 10: the

proof is crucially based on timed dispute digraphs, but the final
bound depends only on the number of nodes and the maximum
edge delay—even the exact topology is irrelevant.

Our real-time model is an extension of the SPP/SPVP model
used in [3], [4]. It is designed to be general enough to cap-
ture most aspects of BGP-like protocols and at the same time
simple enough to allow feasible formal reasoning. In order to
be able to accomplish both tasks, the model makes certain sim-
plifying assumptions about the protocol. As the authors point
out in [3], the model ignores address aggregation and internal
BGP. Basically, the model represents the network abstractly as
a set of interconnected autonomous systems (with unknown in-
ternal structure), rather than a set individual routers. Also, we
model route propagation by messages carrying a single route.
This does not appear to be a substantial simplification, as BGP
update messages containing multiple routes can be modeled as
sequences of single-route messages. In addition to that, route
withdrawals can be modeled by messages containing an empty
path ε.

The main challenge in practically applying the real-time as-
pects of the model is estimating edge delays. While it is clear
that existence of edge delays is necessary for estimating con-
vergence time (as argued in Section III), it is not so clear how
should one go about calculating them. An edge delay de-
pends on the underlying network, traffic congestion, and par-
ticular BGP implementations used at its endpoints. A plausible
strategy for estimating edge delays would most likely involve
measuring route propagation time across the edge under heavy-
traffic conditions. It is probably hard to estimate the absolutely
worst propagation time possible (or it would turn out to be infi-
nite), but measurement could provide a reasonable idea of how
bad can it get. At the present time, the author has not conducted
any experiments of that kind.

Finally, we should comment on our assumption about the
static topology and static policies of the routers. Although
this may appear to be a strong constraint, in most cases this
is the best one can do. Indeed, topology changes can be so
frequent that even the most efficient protocol would not have
enough time to converge. Instead, we take the practical stand
that topology and policies in reality change only every so of-
ten. Our results are meant to be applied to periods in between
these changes. Convergence is guaranteed as long as the esti-
mated convergence time is shorter than the time between topol-
ogy/policy changes. This is a common assumption for studies
of convergence time of routing protocols (e.g. see [12], [13]).

The best way to ensure convergence of BGP while allowing
general routing policies is still an open problem. It is likely
that more solutions to this problem would be proposed in fu-
ture. The author believes that the analysis of timed dispute di-
graphs (or some equivalent structures) can be used as a general
technique for evaluating these proposals from the standpoint of
convergence time. A more in-depth analysis of the subject can
be found in [14].

ACKNOWLEDGEMENTS

The author would like to thank Rajeev Alur, Karthikeyan
Bhargavan, Alwyn Goodloe, Timothy G. Griffin, Roch Guerin,

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

Carl A. Gunter, Pankaj Kakkar, Insup Lee, Michael McDougall,
and Alvaro Retana for their suggestions and support.

REFERENCES

[1] John W. Stewart III, BGP4 (Inter-Domain Routing in the Internet),
Addison-Wesley, 1998.

[2] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-4),” RFC 1771,
IETF, March 1995.

[3] Timothy G. Griffin and Gordon Wilfong, “An analysis of BGP conver-
gence properties,” in Proceedings of ACM SIGCOMM ’99 Conference,
Guru Parulkar and Jonathan S. Turner, Eds., Boston, August 1999, pp.
277–288.

[4] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong, “Policy dis-
putes in path-vector protocols,” in Proceedings of ICNP ’99 Conference,
Toronto, Canada, October 1999.

[5] Timothy G. Griffin and Gordon Wilfong, “A safe path vector protocol,”
in Proceedings of INFOCOM 2000 Conference, Tel Aviv, Israel, March
2000.

[6] Lixin Gao and Jennifer Rexford, “Stable internet routing without global
coordination,” in ACM SIGMETRICS, 2000.

[7] K. Varadhan, R. Govindan, and D. Estrin, “Persistent route oscillations
in inter-domain routing,” ISI Technical Report 96-631, USC/Information
Sciences Institute, 1996.

[8] Craig Labovitz, Roger Wattenhofer, Srinivasan Venkatachary, and Abha
Ahuja, “The impact of internet policy and topology on delayed routing
convergence,” in Proceedings of INFOCOM 2001, Anchorage, Alaska,
April 2001.

[9] C. Alaettinoglu, “Scalable router configuration for the internet,” in Pro-
ceedings of the 1996 International Conference on Networking Protocols.,
October 1996.

[10] G. Huston, “Interconnection, peering, and settlements,” in Proceedings
of INET, June 1999.

[11] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “An experimental study
of internet routing convergence,” Technical Report MSR-TR-2000-08,
Microsoft Research, 2000.

[12] Karthikeyan Bhargavan, Carl A. Gunter, and Davor Obradovic, “RIP in
SPIN/HOL,” in Theorem Proving in Higher-Order Logics (TPHOLs),
Portland, OR, August 2000.

[13] Dimitri P. Bertsekas and Robert Gallager, Data Networks, Prentice Hall,
1991.

[14] Davor Obradovic, Formal Analysis of Routing Protocols, Ph.D. thesis,
University of Pennsylvania, 2001.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

