

Master's Thesis Presentation :

Forwarding Capacity of an Infinite Homogeneous Wireless Network

Jarno Nousiainen 25.2.2008

Supervisor: Professor Jorma Virtamo Instructor: D.Sc.(Tech.) Pasi Lassila Department of Communications and Networking

Outline

- Introduction
- Problem statement
 - Problem decomposition
- Network model
 - Performance measures
 - Network as a graph
- Max-flow min-cut theorem
- Moving window algorithm
- Results
- Conclusions

Introduction

Large network scenario

- Average distance between a source and a destination is much larger than the distance between adjacent nodes
- Paths consist of many hops and the intermediate nodes act as relays

Geographic routing

- Based on location information
- Nodes forward traffic towards the destination
- Routing around concave nodes
 - Concave nodes do not have neighbors in the direction of the destination

Problem statement

- Problem decomposition
 - Macroscopic level corresponds to the distance between the source and destination nodes
 - Microscopic level corresponds to the distance between neighboring nodes
- Macroscopic level routing
 - Network nodes form a homogeneous, continuous medium
 - Routes are smooth geometric curves
- Microscopic level forwarding
 - Only the direction in which the packet is traversing is significant
 - There exists a maximum flow a given MAC protocol can sustain
 - The capacity can be shared between directions with time sharing
- Task: Find an upper bound for the maximal forwarding capacity

Network model

- Nodes are distributed according to a homogeneous Poisson point process in two dimensions
 - Intensity λ
- Boolean interference model with a common, fixed transmission range R
 - Node can only receive a packet if it hears exactly one transmission
 - No separate interference range
 - Mean number of neighbors: $N_R = \lambda \pi R^2$
- Only relay traffic in single direction
 - Paths are long mostly relay traffic anyway
 - Different directions by time sharing
- Slotted time

Performance measures

- Single node's point of view
 - Mean progress of a packet, D [m]
 - D = P(node transmits) · P(no collision | node transmits)
 - E[progress of a packet | successful transmission]
 - Dimensionless measure: $u = \sqrt{\lambda} \cdot D$
- Network level measure
 - Mean density of progress, / [1/(m · s)]
 - Total progress of packets per area per time
 - Also the number of packets crossing a line of unit length perpendicular to the direction of the packet flow in unit time

$$I = \frac{\lambda \cdot dA \cdot D}{dA \cdot \Delta t} = \frac{\sqrt{\lambda}}{\Delta t} \cdot u$$

Network as a graph

Network is modeled as a flow network N = (G, c, s, t)

Nodes and links: G = (V, E), link capacities: c, a source and a sink: s, t

- Schedule $\alpha = \{t_1, ..., t_n\}$ assigns each transmission mode L_i with the proportion of time t_i it is used
 - Transmission mode is an independent set of links

- Capacity of link e is the time share the link is active
- **I** Flow *f* is a mapping $f: E \to \mathbb{R}^+$
 - $0 \le f(e) \le c(e)$ for all $e \in E$
 - Flows are preserved at every node (except at the source and the sink)
 - Value of a flow w(f) is the net flow leaving the source (or entering the sink)
- Cut q = (S,T) of N is a partition V = S + T ($V = S \cup T, S \cap T = \emptyset$)
 - Capacity of a cut is a sum of the capacities of crossing links

Max-flow min-cut theorem

- (Ford and Fulkerson 1956) The maximal value of a flow on a flow network N equals the minimal capacity of a cut in N.
- In a wireless case, we have to find the optimal transmission radius and schedule as well
- We get an upper bound for the capacity by examining a smaller set of cuts

 $\max_{R} \max_{\alpha} \min_{q \in Q} c(q, \alpha; R)$

$$w(f_R^*) = \max_{\alpha} \min_{q \in Q} c(q, \alpha)$$
$$\leq \max_{\alpha} \min_{q \in Q' \subset Q} c(q, \alpha)$$

Moving window algorithm

- Let Q' consist of one arbitrary cut corresponding to a straight line perpendicular to the direction of the packet flow
 - Maximizing with respect to *α* finds the size of the maximum independent set
- Window separating the links above and below is moved along the line
 - Maximum is found recursively by solving the maximum so far given a combination of active links in the window
 - Leaves of a binary tree represent the possible link combinations and the value assigned to each leaf corresponds to the optimum value

B

MWA – remarks

- Length of the simulation is not limited
 - The result converges unbiasedly towards the true value
- Capacity of one cut can only be achieved very locally
 - There is no horizontal interference
- We get a tighter upper bound by increasing the number of cuts in Q'
- Two cuts:
 - We want to find the distance with maximum interference
- Infinite number of cuts:
 - Number of crossed cuts is proportional to the progress of the link
 - Opposite sides of the window are connected together to form a tube
 - The result is still an upper bound, since the corresponding flow network is not connected
 - Gives the maximum capacity in one time slot

Results

- The results for one, two, and infinite number of cuts
- Greedy methods approximates the case with infinite number of cuts
- OF and CMEF are feasible forwarding methods
 - Actual methods give a lower bound for the maximum capacity
 - Opportunistic forwarding (OF) represents what can be achieved through local coordination

Conclusions

Large, dense ad hoc network

- Problem decomposition: Macroscopic (end-to-end) vs. microscopic (adjacent nodes)
- Poisson Boolean model
- Maximal forwarding capacity characteristic to the medium
- Augmented Max-flow min-cut theorem
 - Upper bound by examining a limited set of cuts
- The tightest upper bound is still three times the highest achieved dimensionless mean progress