# Forwarding Capacity of an Infinite Homogeneous Wireless Network 

Jarno Nousiainen
25.2.2008

Supervisor: Professor Jorma Virtamo Instructor: D.Sc.(Tech.) Pasi Lassila
Department of Communications and Networking

## Outline

- Introduction
- Problem statement
- Problem decomposition
- Network model
- Performance measures
- Network as a graph
- Max-flow min-cut theorem
- Moving window algorithm
- Results
$\square$ Conclusions


## Introduction

- Large network scenario
- Average distance between a source and a destination is much larger than the distance between adjacent nodes
- Paths consist of many hops and the intermediate nodes act as relays
- Geographic routing
- Based on location information
- Nodes forward traffic towards the destination
- Routing around concave nodes
- Concave nodes do not have neighbors in the direction of the destination


## Problem statement

- Problem decomposition
- Macroscopic level corresponds to the distance between the source and destination nodes
- Microscopic level corresponds to the distance between neighboring nodes
- Macroscopic level routing
- Network nodes form a homogeneous, continuous medium
- Routes are smooth geometric curves


## Routing:

- Define the geometric properties of the routes

Direction of packet flow

## Forwarding:

- Maximize the packet flow in the given direction
- Microscopic level forwarding
- Only the direction in which the packet is traversing is significant
- There exists a maximum flow a given MAC protocol can sustain
- The capacity can be shared between directions with time sharing
- Task: Find an upper bound for the maximal forwarding capacity


## Network model

- Nodes are distributed according to a homogeneous Poisson point process in two dimensions
- Intensity $\lambda$
- Boolean interference model with a common, fixed transmission range $R$
$\square$ Node can only receive a packet if it hears exactly one transmission
- No separate interference range
- Mean number of neighbors: $N_{R}=\lambda \pi R^{2}$
- Only relay traffic in single direction
- Paths are long - mostly relay traffic anyway
- Different directions by time sharing
$\square$ Slotted time


## Performance measures

- Single node's point of view
- Mean progress of a packet, $D[\mathrm{~m}]$
- $D=P$ (node transmits) $\cdot P$ (no collision | node transmits)
- E[progress of a packet | successful transmission]
- Dimensionless measure: $u=\sqrt{ } \lambda \cdot D$
- Network level measure

■ Mean density of progress, I [1/(m•s)]

- Total progress of packets per area per time
- Also the number of packets crossing a line of unit length perpendicular to the direction of the packet flow in unit time

$$
I=\frac{\lambda \cdot d A \cdot D}{d A \cdot \Delta t}=\frac{\sqrt{\lambda}}{\Delta t} \cdot u
$$

## Network as a graph

- Network is modeled as a flow network $N=(G, c, s, t)$
- Nodes and links: $G=(V, E)$, link capacities: $c$, a source and a sink: $s, t$
- Schedule $\alpha=\left\{t_{1}, \ldots, t_{n}\right\}$ assigns each transmission mode $L_{i}$ with the proportion of time $t_{i}$ it is used
- Transmission mode is an independent set of links
- Capacity of link $e$ is the time share the link is active

$$
c(e)=\sum_{i=1}^{n} t_{i} 1_{\left(e \in L_{i}\right)}
$$

$\square$ Flow $f$ is a mapping $f: E \rightarrow \mathbb{R}^{+}$

- $0 \leq f(e) \leq c(e)$ for all $e \in E$
- Flows are preserved at every node (except at the source and the sink)
- Value of a flow $w(f)$ is the net flow leaving the source (or entering the sink)
- Cut $q=(S, T)$ of $N$ is a partition $V=S+T(V=S \cup T, S \cap T=\varnothing)$
- Capacity of a cut is a sum of the capacities of crossing links


## Max-flow min-cut theorem

- (Ford and Fulkerson 1956) The maximal value of a flow on a flow network $N$ equals the minimal capacity of a cut in $N$.
- In a wireless case, we have
to find the optimal transmission radius and schedule as well

```
\mp@subsup{m}{R}{}}\mp@subsup{\operatorname{max}}{\alpha}{}\mp@subsup{\operatorname{max}}{q\inQ}{\mp@subsup{m}{|}{}}c(q,\alpha;R
```

- We get an upper bound for the capacity by examining a smaller set of cuts

$$
\begin{aligned}
w\left(f_{R}^{*}\right) & =\max _{\alpha} \min _{q \in Q} c(q, \alpha) \\
& \leq \max _{\alpha} \min _{q \in Q^{\prime} \subset Q} c(q, \alpha)
\end{aligned}
$$

## Moving window algorithm

- Let Q' consist of one arbitrary cut corresponding to a straight line perpendicular to the direction of the packet flow
- Maximizing with respect to $\alpha$ finds the size of the maximum independent set
- Window separating the links above and below is moved along the line
- Maximum is found recursively by solving the maximum so far given a combination of active links in the window
- Leaves of a binary tree represent the possible link combinations and the value assigned to each leaf corresponds to the optimum value



## MWA - remarks

- Length of the simulation is not limited
- The result converges unbiasedly towards the true value
- Capacity of one cut can only be achieved very locally
- There is no horizontal interference
$\square$ We get a tighter upper bound by increasing the number of cuts in $Q^{\prime}$
- Two cuts:
- We want to find the distance with maximum interference
- Infinite number of cuts:
- Number of crossed cuts is proportional to the progress of the link
- Opposite sides of the window are connected together to form a tube
- The result is still an upper bound, since the corresponding flow network is not connected
- Gives the maximum capacity in one time slot


## Results

- The results for one, two, and infinite number of cuts
- Greedy methods approximates the case with infinite number of cuts
- OF and CMEF are feasible forwarding methods
- Actual methods give a lower bound for the maximum capacity
- Opportunistic forwarding (OF) represents what can be achieved through local coordination



## Conclusions

- Large, dense ad hoc network
- Problem decomposition: Macroscopic (end-to-end) vs. microscopic (adjacent nodes)
- Poisson Boolean model
- Maximal forwarding capacity characteristic to the medium
- Augmented Max-flow min-cut theorem

■ Upper bound by examining a limited set of cuts

- The tightest upper bound is still three times the highest achieved dimensionless mean progress

