Legacy Network Address Translator Traversal Using the Host Identity Protocol

(Perinteisten osoitteenmuuntajien läpäisy käyttäen koneen identiteetti protokollaa)

5.6.2007

Author: Lauri Silvennoinen
Supervisor: Professor Jörg Ott
Instructor: M.Sc. Miika Komu
InfraHIP project

• HIIT (University of Helsinki) and TML (HUT) joint effort
 – Running since November 18th 2004
 – Develops C-based HIP for Linux
 – Financial Support from
 – TEKES
 – Nokia
 – Ericsson
 – Elisa
 – Finnish Defence Forces
Agenda

- Host Identity Protocol (HIP)
- Network Address Translation (NAT)
- Legacy NAT traversal using HIP
- Conclusions
Host Identity Protocol (HIP) is being specified in IETF and IRTF work groups
 - Initial ideas, late 1999
 - Work groups since November 2003

HIP is being implemented in various projects
 - HIP for Linux (InfraHIP project)
 - HIP for BSD (HIP for inter.net project)
 - OpenHIP Project
Research Problem

- Currently deployed NAT devices can translate TCP, UDP and ICMP packets
- NATs block unknown protocols, thus HIP won't work
Motivation behind HIP

- IP addresses are used both to
 - identify a host
 - locate a host
- This duality makes many things hard
 - for example dynamic readdressing
- In HIP architecture
 - Host Identifier (HI) identifies a host
 - IP address locates a host
HIP Fundamentals (1/3)

- HIP is a concrete proposal for adding a new name space to the TCP/IP stack
Current Internet has two global name spaces
- DNS names, kosh.hut.fi
- IP addresses, 130.233.228.10

New Host Identity name space
- Host Identifiers, Host Identity Tags
 2001:001:8745:9ad4:fb5:6ea:85c7:4799
 - Statistically globally unique
HIP Fundamentals (3/3)

- Each host has at least one Host Identifier (HI)
- HIP communication is based on two different protocols
 - HIP protocol itself for establishment and management of communications
 - IPSec ESP to exchange user and application data in a secured way
Example HIP session

1. kosh.hut.fi?

DNS

2. kosh.hut.fi is
 2001:001:8745:9ad4:
 fb5:6ea:85c7:4799
 located at 130.233.228.10

3. HIP four-way handshake

4. ESP protected data
Host Identity

- A public key of an asymmetric key pair
- Public keys tend to be rather long
 - A Host Identity Tag (HIT) is a 128-bit hash of the HI
 - HITs are exchanged during the four-way handshake
- The length of HIT equals the length of IPv6 address
 - HITs can be used in IPv6-sized fields in APIs
Internet Sockets in HIP

- Sockets bound to HIs, not to IP addresses

 - Current
 - protocol
 - source IP address
 - source port
 - dest. IP address
 - destination port

 - HIP
 - protocol
 - source HI
 - source port
 - destination HI
 - destination port
Agenda

- Host Identity Protocol (HIP)
- **Network Address Translation (NAT)**
- Legacy NAT traversal using HIP
- Conclusions
Network Address Translation

- A function, ..., that dynamically assigns a globally unique address to a host that doesn't have one, without that host's knowledge. [RFC 3234]
Motivation Behind NAT

- Public IPv4 address shortage
 - addresses are becoming more and more difficult to reserve
 - public IPv4 addresses are expensive
- Whenever external network topology changes, address assignment for local domain must reflect these changes
 - NATs can hide these kind of changes from local domain users
NAT Fundamentals (1/2)

- Only outbound traffic is permitted
 - static address maps are exceptions
- Outbound traffic creates a translation state in NAT
 - traffic sent in response from public realm uses this translation state and is permitted
- Private realm IP addresses are local to that domain
NAT Fundamentals (2/2)

- Sessions other than UDP, TCP and ICMP query type (ping) are not permitted.
- Address translation is application independent.
 - Application Level Gateways (ALGs) are needed to perform payload monitoring.
 - NATs cause trouble to applications that carry IP addresses in payload.
NAT types

- Basic NAT maps private realm IP addresses to public realm IP addresses
 - Translates only IP addresses
- Network Address and Port Translator (NAPT)
 - Translation includes IP address and transport layer port number
 - The most commonly deployed NAT type
- NAPT and Basic NAT = Traditional NAT
NAPT

Source IP address: 10.0.0.1

Host A

Source IP address for host A: 198.76.28.4:1024, for host B 198.76.28.4:1025, for host C 198.76.28.4:1026

Host B

Source IP address

10.0.0.2

Host C

10.0.0.3

NAPT

Only one public IP address is required!
NAT Classification

• Based on the concept of an Endpoint
 – Endpoint is the combination of an IP address and a port number
• Endpoint mapping refers to outgoing traffic
• Endpoint filtering refers to incoming traffic
 – 94.2% employ Endpoint Dependent Filtering
Key Question in NAT Traversal

- Does the NAT assign the same Endpoint to two simultaneous transport layer sessions originating from the same Endpoint and destined to different targets?
 - From the same local computer
 - Using the same protocol
 - While the translation state is valid in NAT
 - Targeted to two different locations
"Good" NAT

- Address Independent Mapping

Host

Session 1
Source 10.0.0.1:1234
Destination 18.181.0.31:80

Session 2
Source 10.0.0.1:1234
Destination 138.76.29.7:80

NAT

Session 1
Source 159.99.25.11:62000
Destination 18.181.0.31:80

Session 2
Source 159.99.25.11:62000
Destination 138.76.29.7:80
"Bad" NAT

- Address Dependent Mapping

Host

Session 1
- Source: 10.0.0.1:1234
- Destination: 18.181.0.31:80

Session 2
- Source: 10.0.0.1:1234
- Destination: 138.76.29.7:80

NAT

Session 1
- Source: 159.99.25.11:62000
- Destination: 18.181.0.31:80

Session 2
- Source: 159.99.25.11:62001
- Destination: 138.76.29.7:80
NATs deployed

- Of all NATs deployed approximately 70% are "good" NATs.
- The remaining 30% are "bad" NATs.
- Some measurements show that 74% of all computers are behind a NAT.
 - This is only a rough estimation.
Agenda

- Host Identity Protocol (HIP)
- Network Address Translation (NAT)
- **Legacy NAT traversal using HIP**
- Conclusions
UDP Encapsulation

• Problem: only TCP, UDP and ICMP traffic permitted
• Solution: encapsulate all traffic in UDP
 – Instead of IP(HIP) use IP(UDP(HIP))
 – Instead of IP(ESP) use IP(UDP(ESP))
Responder behind NAT

- Problem: only outbound traffic can traverse NATs. How can a host behind a NAT be reached?
Rendezvous Server (RVS)

- Solution: use a Rendezvous Server where the Responder can register its whereabouts
Example Scenario

- Cascaded NATs
- A bad NAT enroute
Evaluation of the Solution

- UDP encapsulation and RVS together solve the main problems NATs cause

- However, further work still remains
 - A single "bad" NAT enroute ruins our design
 - NAT detection
 - Cascaded NATs
Agenda

- Host Identity Protocol (HIP)
- Network Address Translation (NAT)
- Legacy NAT traversal using HIP
- Conclusions
Conclusions (1/2)

- Host Identity Protocol
 - Solves the dual role of IP addresses
 - Looks nice on paper but is still a work in progress
 - Widespread deployment requires
 - Endhosts that support HIP
 - DNSSEC for Host Identifiers
 - Deployment of RVSes
 - Deployment of NAT detection servers (STUN)
Conclusions (2/2)

• Network Address Translators
 – Cause a lot of headache to protocol designers
 • Protocols that carry IP addresses in payload are especially vulnerable
 – Are not standardized in anyway, thus many variations exist
 • RFC 4787 (January 2007) gives general guidelines on how a NAT should be designed
 • Buy RFC 4787 compliant NATs
Questions?

- Thank You!