Legacy Network Address Translator Traversal Using the Host Identity Protocol

(Perinteisten osoitteenmuuntajien läpäisy käyttäen koneen identiteetti protokollaa)

5.6.2007

Author: Supervisor: Instructor:

Lauri Silvennoinen Professor Jörg Ott M.Sc. Miika Komu

InfraHIP project

- HIIT (University of Helsinki) and TML (HUT) joint effort
 - Running since November 18th 2004
 - Develops C-based HIP for Linux
 - Financial Support from
 - TEKES

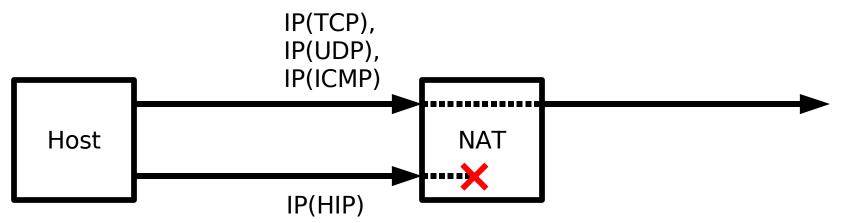
– Elisa

– Nokia

Finnish Defence Forces

- Ericsson

Agenda

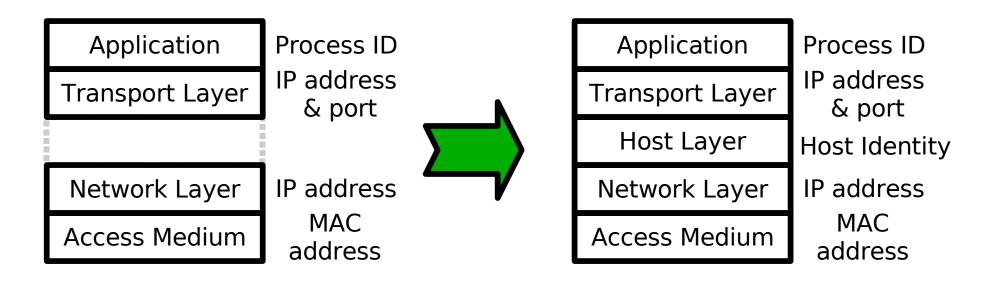

- Host Identity Protocol (HIP)
- Network Address Translation (NAT)
- Legacy NAT traversal using HIP
- Conclusions

HIP Background

- Host Identity Protocol (HIP) is being specified in IETF and IRTF work groups
 - Initial ideas, late 1999
 - Work groups since November 2003
- HIP is being implemented in various projects
 - HIP for Linux (InfraHIP project)
 - HIP for BSD (HIP for inter.net project)
 - OpenHIP Project

Research Problem

- Currently deployed NAT devices can translate TCP, UDP and ICMP packets
- NATs block unknown protocols, thus HIP won't work



Motivation behind HIP

- IP addresses are used both to
 - identify a host
 - locate a host
- This duality makes many things hard
 - for example dynamic readdressing
- In HIP architecture
 - Host Identifier (HI) identifies a host
 - IP address locates a host

HIP Fundamentals (1/3)

 HIP is a concrete proposal for adding a new name space to the TCP/IP stack

HIP Fundamentals (2/3)

- Current Internet has two global name spaces
 - DNS names, kosh.hut.fi
 - IP addresses, 130.233.228.10
- New Host Identity name space
 - Host Indentifiers, Host Identity Tags 2001:001:8745:9ad4:fb5:6ea:85c7:4799
 - Statistically globally unique

HIP Fundamentals (3/3)

- Each host has at least one Host Identifier (HI)
- HIP communication is based on two different protocols
 - HIP protocol itself for establishment and management of communications
 - IPSec ESP to exchange user and application data in a secured way

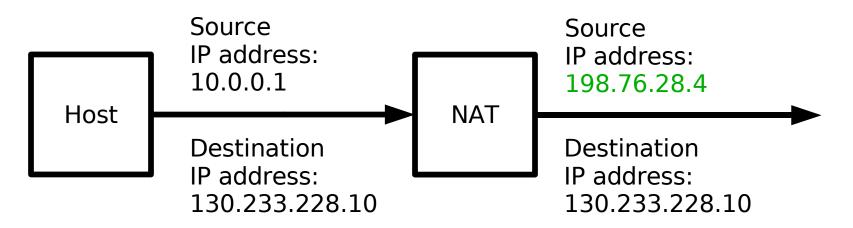
Example HIP session

Host Identity

- A public key of an asymmetric key pair
- Public keys tend to be rather long
 - A Host Identity Tag (HIT) is a 128-bit hash of the HI
 - HITs are exchanged during the four-way handshake
- The length of HIT equals the length of IPv6 address
 - HITs can be used in IPv6-sized fields in APIs

Internet Sockets in HIP

- Sockets bound to HIs, not to IP addresses
- Current HIP
 - protocol protocol
 - source IP address source HI
 - source port s
 - dest. IP address
 - destination port


- source port
- destination HI
- destination port

Agenda

- Host Identity Protocol (HIP)
- Network Address Translation (NAT)
- Legacy NAT traversal using HIP
- Conclusions

Network Address Translation

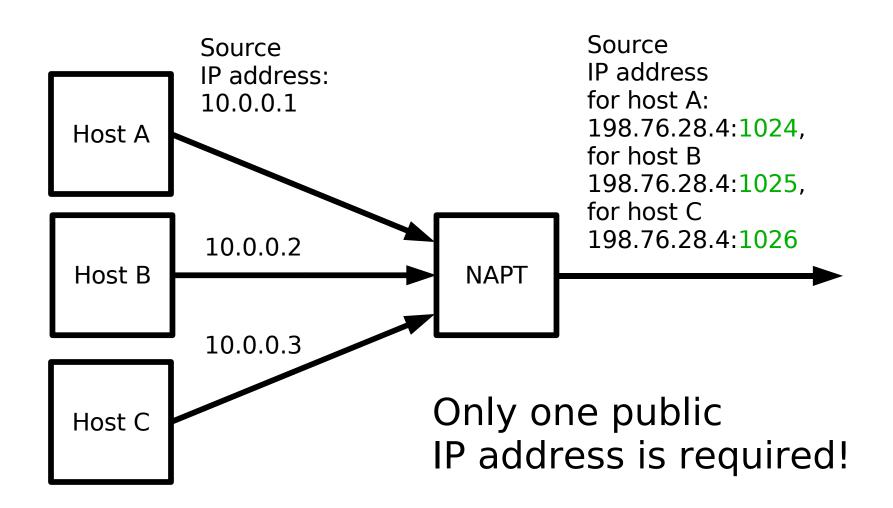
 A function, ..., that dynamically assigns a globally unique address to a host that doesn't have one, without that host's knowledge. [RFC 3234]

Motivation Behind NAT

- Public IPv4 address shortage
 - addresses are becoming more and more difficult to reserve
 - public IPv4 addresses are expensive
- Whenever external network topology changes, address assignment for local domain must reflect these changes
 - NATs can hide these kind of changes from local domain users

NAT Fundamentals (1/2)

- Only outbound traffic is permitted
 - static address maps are exceptions
- Outbound traffic creates a translation state in NAT
 - traffic sent in response from public realm uses this translation state and is permitted
- Private realm IP addresses are local to that domain


NAT Fundamentals (2/2)

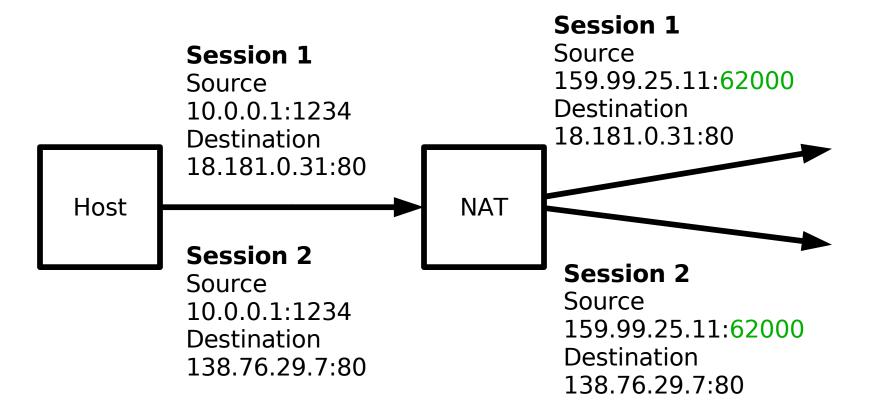
- Sessions other than UDP, TCP and ICMP query type (ping) are not permitted
- Address translation is application independent
 - Application Level Gateways (ALGs) are needed to perform payload monitoring
 - NATs cause trouble to applications that carry IP addresses in payload

NAT types

- Basic NAT maps private realm IP addresses to public realm IP addresses
 - Translates only IP addresses
- Network Address and Port Translator (NAPT)
 - Translation includes IP address and transport layer port number
 - The most commonly deployed NAT type
- NAPT and Basic NAT = Traditional NAT

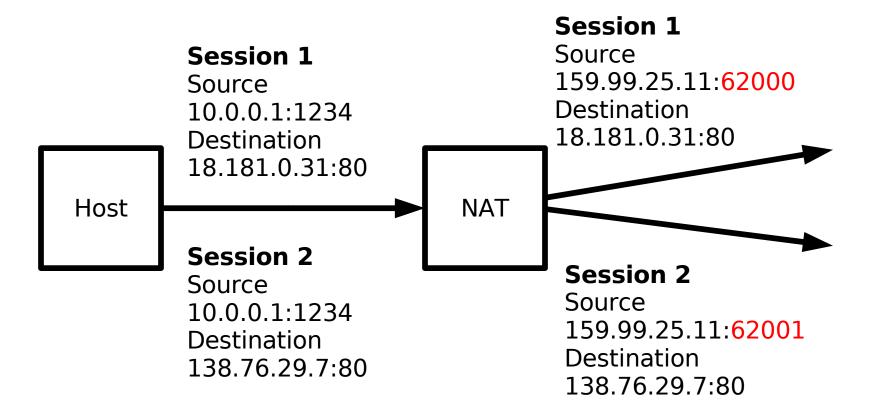
NAPT

NAT Classification


- Based on the concept of an Endpoint
 - Endpoint is the combination of an IP address and a port number
- Endpoint mapping refers to outgoing traffic
- Endpoint filtering refers to incoming traffic
 - 94.2% employ Endpoint Dependent Filtering

Key Question in NAT Traversal

- Does the NAT assign the same Endpoint to two simultaneous transport layer sessions originating from the same Endpoint and destined to different targets?
 - From the same local computer
 - Using the same protocol
 - While the translation state is valid in NAT
 - Targeted to two different locations


"Good" NAT

Address Independent Mapping

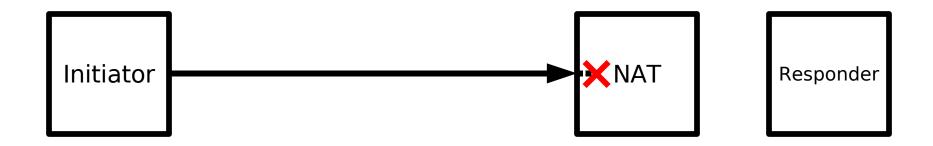
"Bad" NAT

Address Dependent Mapping

NATs deployed

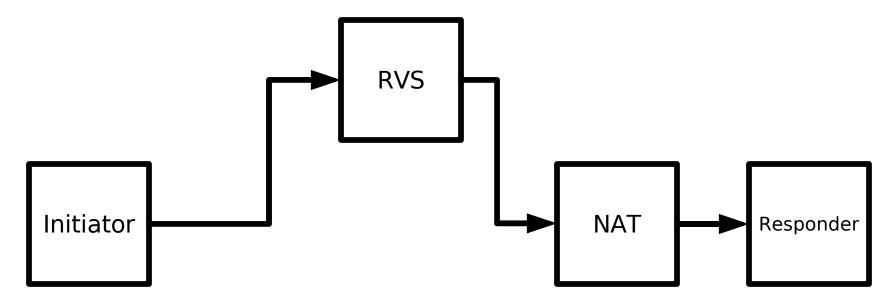
- Of all NATs deployed approximately 70% are "good" NATs
- The remaining 30% are "bad" NATs
- Some measurents show, that 74% of all computers are behind a NAT
 - This is only a rough estimation

Agenda

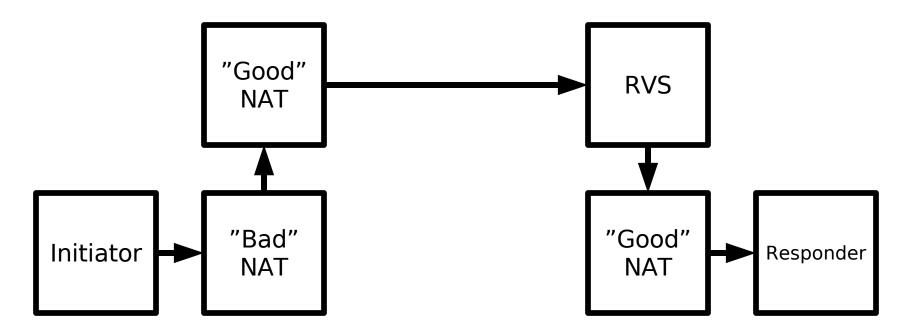

- Host Identity Protocol (HIP)
- Network Address Translation (NAT)
- Legacy NAT traversal using HIP
- Conclusions

UDP Encapsulation

- Problem: only TCP, UDP and ICMP traffic permitted
- Solution: encapsulate all traffic in UDP
 - Instead of IP(HIP) use IP(UDP(HIP))
 - Instead of IP(ESP) use IP(UDP(ESP))


Responder behind NAT

 Problem: only outbound traffic can traverse NATs. How can a host behind a NAT be reached?


Rendezvous Server (RVS)

 Solution: use a Rendezvous Server where the Responder can register its whereabouts

Example Scenario

- Cascaded NATs
- A bad NAT enroute

Evaluation of the Solution

- UDP encapsulation and RVS together solve the main problems NATs cause
- However, further work still remains
 - A single "bad" NAT enroute ruins our design
 - NAT detection
 - Cascaded NATs

Agenda

- Host Identity Protocol (HIP)
- Network Address Translation (NAT)
- Legacy NAT traversal using HIP
- Conclusions

Conclusions (1/2)

- Host Identity Protocol
 - Solves the dual role of IP addresses
 - Looks nice on paper but is still a work in progess
 - Widespread deployment requires
 - Endhosts that support HIP
 - DNSSEC for Host Identifiers
 - Deployment of RVSes
 - Deployment of NAT detection servers (STUN)

Conclusions (2/2)

- Network Address Translators
 - Cause a lot of headache to protocol designers
 - Protocols that carry IP addresses in payload are especially vulnerable
 - Are not standardized in anyway, thus many variations exist
 - RFC 4787 (January 2007) gives general guidelines on how a NAT should be designed
 - Buy RFC 4787 compliant NATs

Questions?

• Thank You!