Delay-Tolerant Networking for Smart-phones

By: Omar Mukhtar
omar@netlab.hut.fi

Supervisor: Prof Joerg Ott
jo@netlab.hut.fi

Networking Lab – HUT
Agenda

- Overview of Internet protocols
  - Pros and cons...
- Emerging Networks
  - New paradigms, new issues...
- What’s DTN?
  - How does it try to solve the issues?
- DTN protocols
- Implementation architecture
- Conclusions
The Internet and TCP/IP

- Internet – the popular and fast growing communication medium
  - Web, E-mail, Chat, VoIP, Streaming...

- Example applications
  - Education, Research
  - E-Commerce
  - Entertainment
  - Communication
IP is everywhere…

- Changing and leading other communication paradigms
  - IP in 3G & 4G
- Inter-networking of networks
  - Cellular, Wireless, Fixed
  - PANs, LANs, MANs, WANs
- Hour-Glass model
TCP/IP Architectural Principles

- End-to-end connectivity
- End-to-end reliability
- Small end-to-end errors in physical links
- End-to-end congestion control
- End-to-end flow control
- Frequent end-to-end message exchange
  - TCP signaling (SYN-ACK-FIN)
  - Conversational applications (HTTP, FTP etc.)
- In one phrase, Internet is an END-To-END mechanism.
TCP/IP Issues

- IP address for routing and node identification
  - HIP; very recent, not deployed yet
- Early binding (name to address translation before communication begins)
  - One IP address for one node (IPv6)
- Poor recovery on network failures
  - Establish end-to-end connection again?
  - Network nodes discard all packets on system crash.
Emerging Networks

- Extreme, stressed and challenged environments
- High error rates
  - Wireless networks (TCP performance degrades)
- Intermittent connectivity
  - Sparse ad hoc networks e.g. mobile devices, military battlefield equipment (frequent interruptions)
  - Sensor-nets (infrequent access)
  - Low Earth Orbit Satellites (periodic)
- Longer delays
  - Satellite connections
  - Deep space communication (Star-Trek 😊)
Experimental networks...

- Nomadic networks e.g. fast moving vehicles (very short connection time)
- Data-buses, data-mules, message ferries
  - Internet for remote areas, e.g. villages, islands

- End-to-end model breaks in all these scenarios...
  - Can’t use TCP/IP; degrade of fail at all...
  - Separate solutions for separate networks
    - TCP enhancements for wireless networks
Delay-Tolerant Networking

- Tries to fix many of the problems
  - No end-to-end assumption
  - Better recovery on device failures
  - Long delays
  - Minimum end-to-end message exchanges

- A single solution for a variety of networks
  - Interplanetary Internet (deep space communications)
  - Ad Hoc and terrestrial wireless networks
  - Sensor networks
  - Nomadic networks
DTN Architectural Principles

- An overlay network
  - “Bundle” layer, above transport layer and below application layer to inter-network different heterogeneous networks
    - multiple communication links, topologies
- Variable length messages containing complete data and meta-data bundled into one (ideally)
  - Hence called bundle layer
- End-to-end message delivery
  - Virtual message-switching (in contrast with packet-switching)
  - Improved routing decisions made for whole message, rather than packets (based on QoS, priority etc.)
DTN Architectural Principles

- E-mail style store-and-forward architecture
  - Persistent storage to combat network failures, device reboots
- Custody transfer of message, from source to nodes in the network
  - Custody gradually moves “closer” to destination
  - Custodian is responsible for retransmissions (E2E model is broken)
Custody Transfer
Addressing-Naming Schemes

- End-point Identifier (EIDs) based upon standard URIs
  - Defines own URI scheme (dtn://mypc.hut.fi/email)

- Late-binding
  - Routing based on EIDs
  - Name to address translation is performed at quite later stage in the network

- Multiple nodes can register for one EID and one node may register for multiple EIDs
  - Multi-homing and mobility
Routing

- Multiple links for different underlying networks
  - Persistent, on-demand: (always connected)
  - Scheduled, opportunistic: (intermittent)

- Multi-graph network topology
  - Each link with different capacity, availability (time) and direction (symmetric, one way)

- Multi-path routing (in contrast with best route selection in Internet)

- “Intelligent” routing - Active research area
  - Probabilistic, statistical; advanced ad hoc routing algorithms and protocols
Non-conversational paradigm

- Applications restructuring
  - To minimize end-to-end transactions
- Gateways, proxies for existing applications
  - E-mail gateway
- New application design strategies
  - Web over DTN (bundle all related pages into one message)
  - FTP over DTN (send login, password and other meta-data bundled with data)
Protocol Stack & NW Hierarchy

Application Agent
Bundle Protocol Agent
Convergence Layer(s)

DTN App
Bundle
Transport ₁
Network ₁
Link ₁

---

Bundle
Transport ₁  Transport ₁
Network ₁  Network ₁
Link ₁  Link ₂

---

Bundle
Transport ₁  Transport ₂
Network ₁  Network ₂
Link ₂  Link ₂

---

DTN App
Bundle
Transport ₂
Network ₂
Link ₂

---

Host  Bundles Router  Bundle Gateway  Host

An internet  →  An internet  →
Protocol Features

- Flexible and extensible
  - A basic header and extension headers
- Self-Delimiting-Numeric-Values
  - No fixed size fields for lengths (variable headers)
- Dictionary block for EIDs
  - EIDs can also vary in length, so pointers within a buffer are (re)used
- Status reports
  - Like ICMP, but both for positive and negative feedbacks
User tend to carry mobile devices all the time
- Social networks are formed when people meet
- Statistical routing techniques in social networks - an active research area

Intermittently-connected ad hoc networks

Reference implementation is very large and hard to port
- A light-weight DTN framework for smart-phones
- Can be integrated into OS itself

Smart-phones are equipped with multiple communication technologies
- New experimental CLAs for Bluetooth, GPRS, messaging
Programming for Symbian OS

- C++, the native programming language
  - Efficient, optimized applications and server components
- Non-preemptive multitasking
  - Active Objects; no synchronization required
- Constraint devices, less memory, low power
  - Compact code
  - In-place execution
- Optimized API and library functions
  - No STLs
  - Asynchronous OS services
- Client/server framework for IPC
Implementation Architecture

App_1  …………… App_m

UI & Config.

AA

BPA

CLA_1  …………… CLA_n

Router
Implementation Details

- Design of architecture for Symbian OS
  - Generic, extendable, optimized design

- Application agent and sample application for file transfer

- Bundle protocol agent
  - Static routing, flooding

- Convergence layers
  - TCP, Bluetooth

- Socket like native IPC mechanism
  - Runs as a server application
  - offers API for client applications
Testing & Demo Setup

- Inter-operability testing with reference implementation
- Code released under GPL
  - http://www.symob.net/dasm.htm
Conclusions

- DTN is an emerging paradigm for challenged networks
  - Tries to solve many issues found in conventional Internet protocols
  - The implementation can be extended with new features/protocols
- Policy based statistical, probabilistic routing algorithms
- DTN-capable application design
- New convergence layers
- Security issues
- Real-world statistical analysis
Thank you…

- For your patience 😊

- Special thanks to Prof Ott

- Questions?