Mobile IPv6 performance in 802.11 networks: handover optimizations on the link and network layer

LaTe project, Networking laboratory, TKK

Mikko Hautala
mhautala@cc.hut.fi
16.03.2006

Supervisor: Professor Jörg Ott, Networking laboratory

Instructor: Lic.Tech. Markus Peuhkuri, Networking laboratory
Presentation outline

• **Introduction**
 - Background
 - Research problem
 - Objectives and methods
 - 802.11 wireless access network

• **Handover optimization**
 - Link layer (L2) handovers of 802.11
 - Network layer (L3) handovers of Mobile IPv6

• **Experimental results**
 - Simulator framework
 - Handover delay measurements
 - Signaling traffic measurements

• **Conclusion**
Background

- LaTe project is about the feasibility of common standards based wireless networks in military use
 - IEEE 802.11 (Wi-Fi) and 802.16 (WiMAX)
- Wireless networks are a cost effective, flexible and fast to deploy alternative for fixed networks
- Tolerable against physical harming but vulnerable to jamming
- Mobile IPv6 can provide the needed wide area mobility support
Research problem

- Both the 802.11 link layer and the Mobile IPv6 network layer handovers are inefficient
- This hurts realtime applications like VoIP, but throughput sensitive applications using TCP can suffer too
- We study both the link and network layer optimization mechanisms
Objectives and methods used

Objectives

- What is the expected performance of already existing optimization mechanisms?
- Can some of these mechanisms provide seamless handover performance?

Methods used

- In the literature part, we conduct a survey of various optimization mechanisms.
- In the experimental part, the most promising methods are studied using simulation.
802.11 wireless access network

- 802.11 supports combining multiple APs
- Broadcast traffic sets bounds for the size of a single subnet
- Common IP equipment is used to combine these subnets
Handover scenarios in the access network

• Handover can be L2 only (1.)
• Or both L2 and L3 (2. and 3.)
• Handover between two domains (3.)
Presentation outline

• Introduction
 • Background
 • Research problem
 • Objectives and methods
 • 802.11 wireless access network

• Handover optimization
 • Link layer (L2) handovers of 802.11
 • Network layer (L3) handovers of Mobile IPv6

• Experimental results
 • Simulator framework
 • Handover delay measurements
 • Signaling traffic measurements

• Conclusion
Basic 802.11 link layer handover

- Scanning is dominating: 90% of the delay
- Delay ~ 50-420 ms, when there is a single station
- Could be as high as ~8 seconds, when multiple stations
Optimizing 802.11 handover

- Focus in optimizing the scanning delay
 - Proactive scanning seems to be the best approach

- SyncScan:
 - A station switches between channels in parallel to data communications to catch the beacon frames
 - Requires synchronization of the APs and stations

- MultiScan:
 - Two radios: one for data communications and the other for constantly scanning nearby access points
 - Requires changes only to the client side
Mobile IPv6 protocol (RFC 3775)

- Mobile Node has a home address and a care-of-address
- In reverse tunneling (1.), Home Agent captures and tunnels packets for the MN
- Using route optimization (2.), packets are sent directly
- Mobile Node updates its location with binding updates to HA and to CNs
Basic Mobile IPv6 handover

- Contributions to the delay:
 1. Movement detection
 2. New care-of-address (CoA) configuration
 3. Binding update (BU)

- 1. and 2. depend on the Neighbor Discovery protocol, which has inefficiencies

- Binding update latency depends on the delay between the MN and HA
 (or MN and CN if route optimization)
Simple mechanisms:

- **LinkUP trigger from the link layer**
 - Helps detecting movement (trigger to send router solicitation)

- **Fast Router Advertisements (Fast RA)**
 - Fast reply to a router solicitation

- **Optimistic Duplicate Address Discovery (ODAD)**
 - Avoids the costly DAD mechanism
Optimizing the Mobile IPv6 handover (2/3)

Fast handovers for MIPv6 (RFC 4068):

- Prefix discovery and tunneling
- Tunnel setup is either predictive or reactive
- In predictive handover, the L3 handover is nearly eliminated
- Prefix discovery requires that nearby APs are detected before handover is conducted
Hierarchical MIPv6 (RFC 4140):

- Mobility Anchor Point (MAP) is basically a local HA
- In local handovers: send binding updates only to the MAP
- Mainly reduces signaling, but the BU latency is reduced also
Presentation outline

• Introduction
 • Background
 • Research problem
 • Objectives and methods
 • 802.11 wireless access network

• Handover optimization
 • Link layer (L2) handovers of 802.11
 • Network layer (L3) handovers of Mobile IPv6

• Experimental results
 • Simulator framework
 • Handover delay measurements
 • Signaling traffic measurements

• Conclusion
The simulation experiments

- OmNet++ simulator was used
- IPv6 / Mobile IPv6 support provided by the “IPv6Suite” extension
- We implemented the FMIPv6 protocol to the simulator
- We conducted measurements for handover delay and for the signaling traffic
Simulation network

- The bottleneck link: 2 Mbit/s link with a 100 ms delay
- All other links: 1 Gbit/s links with a 5 ms delay
Handover delay measurements (1/3)

- Network layer optimizations studied:
 - Basic MIPv6 and HMIPv6
 - reactive and predictive FMIPv6
 - a combination of LinkUP trigger, Fast RA and ODAD
- On the link layer, we studied the basic mechanism and the “MultiScan” optimization (two radios)
- 9 different scenarios overall
- We used different random seeds and calculated the averages and standard deviations
Scenarios using basic 802.11:

1.a) MIPv6

1.b) HMIPv6

1.c) LinkUP, Fast RA and ODAD

1.d) FMIPv6 fully reactive (only temporary tunnel)

1.e) FMIPv6 fully reactive with LinkUP, Fast RA and ODAD
Handover delay measurements (3/3)

Scenarios using MultiScan:

2.a) MIPv6

2.b) LinkUP, Fast RA and ODAD

2.c) FMIPv6 reactive

2.d) FMIPv6 predictive
Signaling traffic measurements (1/3)

- The same network topology was used, but with 20 mobile nodes.
- Similar movement pattern and speeds were used in each scenario.
 - Each MN had a handover rate of ~1.9 handovers per minute.
- We studied single runs of 600 seconds.
 - Hence, results are only indicative.
- We compared basic MIPv6 and HMIPv6 to both reactive and predictive FMIPv6 handovers.
Signaling traffic measurements (2/3)

Global signaling:

- For HMIPv6, no global signaling
- For MIPv6 and FMIPv6, quite the same loads, as excepted
- Overall, the signaling loads were quite modest (around 200 – 300 bit/s)
Signaling traffic measurements (3/3)

Local signaling:

- In HMIPv6, the router advertisements (MAP option) increase signaling at MAP
- FMIPv6 slightly increases local signaling
- No large differences between the reactive and predictive FMIPv6
Conclusions

• Movement detection is the most critical part in MIPv6 handovers
 – Hence, reducing the BU latency only, is not that rewarding (HMIPv6, FMIPv6 fully reactive)

• FMIPv6 can achieve seamless handovers
 – Requires a link layer optimization

• Quite good performance is gained with simple modifications only to the client side
 – LinkUP, Fast RA, ODAD

• Signaling loads of all the network layer mechanisms were quite modest
Possibilities for future work

- Develop our FMIPv6 model to support co-operation with HMIPv6
- More extensive signaling load measurements using different number of mobile nodes, different handover speeds and network topologies
- Implement FMIPv6 and the needed link layer optimization in practice
 - Mobile IPv6 for Linux (MIPL) project sources could provide a starting point
Thank you!

- Any questions / comments?