3. Packet Data Transfer across EGPRS and WCDMA networks

Dr. David Soldani
(david.soldani@nokia.com, tel. +358.50.3633527)
S-38.3215 Special Course on Networking Technology for Ph.D. students at TKK
Outline

- Packet data through EGPRS networks
 - User plane protocols
 - Control plan protocols
 - Radio channels and frame structure
- Packet data through (enhanced) WCDMA networks
 - User plane protocols
 - Control plan protocols
 - Radio channels and timing
 - HSPA fundamentals
EGPRS: UP protocol stacks

- **packet control unit (PCU)**
 - MAC/RLC functions

- **Logical Link Control Protocol (LLC)**
 - AM, UM and ciphering
 - Mux of LLC frames onto BSSGP virtual connections

- **Sub-Network Dependent Convergence Protocol (SNDCP)**
 - Header compression/decompression (e.g. TCP/IP)
 - Mux N-PDUs (same QoS) of NSAPI(s) onto LLC-SAPI
 - Segmentation/reassembly of LLC frames of max length

Radio Link CP (RLC)
- Segmentation/reassembly RLC PDUs
- AM, UM

Channel Coding Unit (CCU)
- L1 functions

Medium Access CP (MAC)
- Share of PDCCHs between MSs
- Allows MS to used more PDCHs

BSS GPRS Protocol (BSSGP)
- SGSN-BSS flow control
- PTP, PTM and signaling peers
EGPRS: End-to-end data transmission

Radio Block(s) (4 bursts each = 20ms) on PDTCH
- CS 1 – CS 4 (GPRS)
- MCS 1 – MCS 9 (EGPRS)

BSS Virtual Connection
= Mux of LLC frames
(BVCI = Cell ID)

LLC connection: BSS Packet Flow Context (PFC)
= Mux of N-PDUs from one or more NSAPIs
(DLCI(s) = TLLI + SAPI(s))
(LLC–SAPI = NSAP(s))

PCU Frames

One RR connection (TBF) over one or more PDCH(s)
(TS(s))

Packet-switching
- One MM context per MS
 - PDP context(s)
 - QoS Profile(s)
 - TFT(s)
 - Radio priority (UL)
 - PFI(s)
 - Aggregate BSS QoS Profile(s)

One tunnel per PDP Context
(NSAPI, TLLI, TEID)

One MM context
- PDP context(s)
- QoS Profile(s)
- TFT(s)
- Radio priority (UL)
- PFI(s)
- Aggregate BSS QoS Profile(s)

One BSS context per MS
- BSS PFCs (PFIs)
- Aggregate BSS QoS Profile(s)

One BSS context per MS
- PDP context(s)
- QoS Profile(s)
- Radio priority (UL)
- PFI(s)
- Aggregate BSS QoS Profile(s)

Packet Flow Context (PFC)
- Mux of N-PDUs from one or more NSAPIs
 (DLCI(s) = TLLI + SAPI(s))
 (LLC–SAPI = NSAP(s))

One RR connection (TBF)
- Temporary Block Flow (TBF)
 (TFI)

PCU Frames

Circuit-switching
- One BSS context per MS
 - BSS PFCs (PFIs)
 - Aggregate BSS QoS Profile(s)

BTS
- CCU

BSC
- CCU

SGSN
- PCU

GGSN
- Packet-switching
 - PDP context(s)
 - QoS Profile(s)
 - TFT(s)

External PDN

CS 1 – CS 4 (GPRS)
MCS 1 – MCS 9 (EGPRS)

One BSS context per MS
- BSS PFCs (PFIs)
- Aggregate BSS QoS Profile(s)

One MM context per MS
- PDP context(s)
- QoS Profile(s)
- TFT(s)
- Radio priority (UL)
- PFI(s)
- Aggregate BSS QoS Profile(s)
R98: GPRS channel coding

For a Radio Block (RB) carrying a RLC data block, where 1 Radio Block = 4 bursts (20 ms)

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Code rate</th>
<th>Radio block size (Bytes)</th>
<th>Modulation</th>
<th>Data rate (kb/s)</th>
<th>Data rate excluding RLC/MAC headers (kb/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-1</td>
<td>½</td>
<td>23</td>
<td>GMSK</td>
<td>9.05</td>
<td>8</td>
</tr>
<tr>
<td>CS-2</td>
<td>≈ 2/3</td>
<td>34</td>
<td>GMSK</td>
<td>13.4</td>
<td>12</td>
</tr>
<tr>
<td>CS-3</td>
<td>≈ 3/4</td>
<td>39</td>
<td>GMSK</td>
<td>15.6</td>
<td>14.4</td>
</tr>
<tr>
<td>CS-4</td>
<td>1</td>
<td>54</td>
<td>GMSK</td>
<td>21.4</td>
<td>20</td>
</tr>
</tbody>
</table>

Note: 1 GMSK symbol = 1 bit
R99: EGPRS channel coding

- For RB carrying one or more RLC data blocks

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Code rate</th>
<th>Header Code rate</th>
<th>Modulation</th>
<th>RLC blocks per Radio Block (20ms)</th>
<th>Raw Data within one Radio Block</th>
<th>Data rate (kb/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCS-9</td>
<td>1.0</td>
<td>0.36</td>
<td>8PSK</td>
<td>2</td>
<td>2x592</td>
<td>59.2</td>
</tr>
<tr>
<td>MCS-8</td>
<td>0.92</td>
<td>0.36</td>
<td></td>
<td>2</td>
<td>2x544</td>
<td>54.4</td>
</tr>
<tr>
<td>MCS-7</td>
<td>0.76</td>
<td>0.36</td>
<td></td>
<td>2</td>
<td>2x448</td>
<td>44.8</td>
</tr>
<tr>
<td>MCS-6</td>
<td>0.49</td>
<td>1/3</td>
<td>8PSK</td>
<td>1</td>
<td>592</td>
<td>29.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48+544</td>
<td></td>
</tr>
<tr>
<td>MCS-5</td>
<td>0.37</td>
<td>1/3</td>
<td>GMSK</td>
<td>1</td>
<td>448</td>
<td>22.4</td>
</tr>
<tr>
<td>MCS-4</td>
<td>1.0</td>
<td>0.53</td>
<td>GMSK</td>
<td>1</td>
<td>352</td>
<td>17.6</td>
</tr>
<tr>
<td>MCS-3</td>
<td>0.85</td>
<td>0.53</td>
<td>GMSK</td>
<td>1</td>
<td>296</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48+248 and 296</td>
<td></td>
</tr>
<tr>
<td>MCS-2</td>
<td>0.66</td>
<td>0.53</td>
<td>GMSK</td>
<td>1</td>
<td>224</td>
<td>11.2</td>
</tr>
<tr>
<td>MCS-1</td>
<td>0.53</td>
<td>0.53</td>
<td>GMSK</td>
<td>1</td>
<td>176</td>
<td>8.8</td>
</tr>
</tbody>
</table>

Note: The italic captions indicate the 6 octets (48 bits) of padding when retransmitting an MCS-8 block with MCS-3 or MCS-6. For MCS-3, the 6 octets of padding are sent every second block.

Note: 1 8PSK symbol = 3 bits
EGPRS: CP protocol stacks

- For controlling and supporting UP functions

GPRS Mobility and Session Management (GMM/SM)
- GMM: GPRS attach/detach, security, RA update
- SM: PDP context activation, modification and deactivation
Radio channels and frame structure

- **A physical channel** is defined as a sequence of **TDMA frames**, a **time slot** (TS or TSL) number (modulo 8) and a **frequency hopping sequence** (FHS).

- **Logical channels** are defined based on the **type of information** carried over the air interface:
 - Dedicated channels (allocated to an MS)
 - Common channels
Multi-frame structure for PDCH

1 Multi-frame = 52 TDMA Frames

√ = 1 TDMA Frame (8 Time Slots, 4.615 ms)
X = Idle frame, used by the MS for signal measurements and BSIC identification
T = Frame used for PTCCH (Packet Timing advance Control Channel)
B0 - B11 = Radio blocks
Mapping of packet data channels (1/2)

Downlink
- **B0**: PBCCH when allocated, and if required up to 3 more blocks on the same PDCH can be used as additional PBCCHs
- On any PDCH with a PCCCH (with or without PBCCH), **up to the next 12 blocks** in the ordered list of blocks are used for the PPCH, PAGCH, PNCH, PDTCH or PACCH
- On a PDCH that does not contain a PCCCH, **all blocks** can be used as the PDTCH or PACCH

Uplink
- On an uplink PDCH that contains a PCCCH, all blocks in the multi-frame can be used as the PRACH, PDTCH or PACCH
Mapping of packet data channels (2/2)

- Possible channel combinations are
 - PBCCH + PCCCH + PDTCH + PACCH + PTCCH
 - BCCH + PCCCH + PDTCH + PACCH + PTCCH
 - BCCH + CCCH + PDTCH + PACCH + PTCCH
 Where PCCCH = PNCH, PAGCH, PPCH and PRACH
 CCCH = NCH, AGCH, PCH and RACH

- Multi-slot configuration
 - Multiple CS or PS traffic channels together with associated control channels, allocated to the same MS
 - Up to 8 basic physical channels, with different TS numbers, but with same frequency parameters (ARFCN or MA, MAIO and HSN) and TSC
3G: Functional grouping of protocols

- Access (AS) and Non-Access Stratum (NAS)
R6: PS-domain UP protocol stacks

Medium Access Control Protocol (MAC)
- Ciphering for TM-RLC
- Logical channels multiplexing
- TFC selection over TFCS
- Scheduling of FACH, E-DCH and HS-DSCH
- HARQ for E-DCH and HS-DSCH
- TFCI/TFRI selection for E-DCH/HSDPA
- Traffic volume and buffer occupancy measurements

Packet Data Convergence Protocol (PDCP)
- Header compression/decompression (e.g. TCP/IP)

Radio Link Control Protocol (RLC)
- AM (Automatic Repeat reQuest ARQ), UM or TM
- Ciphering for Non-TM
- Each RLC link ID = Bearer ID

Data Link Layer
- TCP/UDP
- IP
- Data Link Layer
- Physical

Physical Layer
- Physical

Bearer service (BS) | Service Access Point (SAP)
Service applications	0	1
Network services	2	3
UMTS bearer service	4	5
Radio Access Bearer service	4	7
Core network bearer service	7	5
Radio Bearer service	4	6
RAN Access bearer service	6	7
Backbone network service	10	11
Physical bearer service	12 (14)	13 (15)
UTRA FDD	8	9

There is a one-to-one correspondence between the PDP context, UMTS bearer and RAB, as well as between the RAB and the radio bearer service, which, however, can be carried by more transport channels of the same type at the radio interface.
The RRC connection is defined as a PTP bidirectional connection between RRC peer entities in the UE and UTRAN.

A UE has either zero or one RRC connection.
UTRA FDD radio interface protocols

C-plane signalling

U-plane information

RRC

PHY

MAC

L2/MAC

Transport Channels

L1

Radio Bearers

L2/BMC

Logical Channels

L2/RLC

L2/PDCP

L3

BMC

PDCP

L2/PDCP
Logical channels (LoCHs)

- Define the transfer of a **specific type of information** over the radio interface

- The logical channels are divided into
 - **Control channels (CCH)** used for transfer of control plane information
 - **Traffic channels (TCH)** used for the transfer of user plane information only
Transport channels (TCHs)

- Specified for data transport between physical layer and Layer 2 peer entities
- Two types of transport channels exist
 - **Common transport channel (CTCH)** is a resource divided between all or a group of users in a cell (in-band ID for users needed)
 - **Dedicated transport channel (DTCH)** is by definition reserved for a single user
Physical channels (PhCHs)

- **Physical channels** are defined by a **carrier frequency**, **scrambling code**, **channelisation code** (optional), time duration (start and stop instants) and, **in the uplink**, relative phase (0 or $\pi/2$)

- A **radio frame** (38 400 chips = 10 ms) is a processing duration which consists of **15 slots** (15 x 2560 chips)

- A **sub-frame** (3 slots = 2 ms) is the basic time interval for **E-DCH** and **HS-DSCH** transmission and related signaling at the physical layer
RRC states in connected mode

- **BCCH, PCCH**
- **BCH, PCH**
- **URA updates**

- **DCCH, DTCH**
- **DPCH, HS-DSCH, E-DCH**

UTRA RRC Connected Mode

- **URA_PCH**
 - out of service
 - in service

- **CELL_PCH**
 - out of service
 - in service

- **CELL_DCH**
 - out of service
 - in service

- **CELL_FACH**
 - out of service
 - in service

GSM Connected Mode

- **GPRS Packet Transfer Mode**
 - CS Inter-RAT Handover
 - PS Handover (3GPP R6)
 - Release RR Connection
 - Establish RR Connection

GPRS Packet Idle Mode

- Camping on a UTRAN cell
- Camping on a GSM / GPRS cell

Idle Mode

- Release RRC connection
- Establish RRC connection
- Release RRC connection
- Establish RRC connection
- Cell reselection
- Release of temporary block flow
- Initiation of temporary block flow
Mapping of TCHs onto PhCHs

<table>
<thead>
<tr>
<th>TRANSPORT CHANNELS</th>
<th>PHYSICAL CHANNELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCH</td>
<td>Dedicated Physical Data Channel (DPDCH)</td>
</tr>
<tr>
<td></td>
<td>Dedicated Physical Control Channel (DPCCH)</td>
</tr>
<tr>
<td></td>
<td>Fractional Dedicated Physical Channel (F-DPCH)</td>
</tr>
<tr>
<td>E-DCH</td>
<td>E-DCH Dedicated Physical Data Channel (E-DPDCH)</td>
</tr>
<tr>
<td></td>
<td>E-DCH Dedicated Physical Control Channel (E-DPCCH)</td>
</tr>
<tr>
<td></td>
<td>E-DCH Absolute Grant Channel (E-AGCH)</td>
</tr>
<tr>
<td></td>
<td>E-DCH Relative Grant Channel (E-RGCH)</td>
</tr>
<tr>
<td></td>
<td>E-DCH Hybrid ARQ Indicator Channel (E-HICH)</td>
</tr>
<tr>
<td>RACH</td>
<td>Physical Random Access Channel (PRACH)</td>
</tr>
<tr>
<td></td>
<td>Common Pilot Channel (CPICH)</td>
</tr>
<tr>
<td>BCH</td>
<td>Primary Common Control Physical Channel (P-CCPCH)</td>
</tr>
<tr>
<td>FACH</td>
<td>Secondary Common Control Physical Channel (S-CCPCH)</td>
</tr>
<tr>
<td>PCH</td>
<td>Synchronization Channel (SCH)</td>
</tr>
<tr>
<td></td>
<td>Acquisition Indicator Channel (AICH)</td>
</tr>
<tr>
<td></td>
<td>Paging Indicator Channel (PICH)</td>
</tr>
<tr>
<td></td>
<td>MBMS Notification Indicator Channel (MICH)</td>
</tr>
<tr>
<td>HS-DSCH</td>
<td>High Speed Physical Downlink Shared Channel (HS-PDSCH)</td>
</tr>
<tr>
<td></td>
<td>HS-DSCH-related Shared Control Channel (HS-SCCH)</td>
</tr>
<tr>
<td></td>
<td>Dedicated Physical Control Channel (uplink) for HS-DSCH (HS-DPCCH)</td>
</tr>
</tbody>
</table>
Example of L2 (MAC)-L1 data exchange

Transport Format Combination (TFC)

Transport Format Combination Set (TFCS)

Transport Format Set (TFS)

Transport Format (TF)

Transport Block Set (TBS)

Transmission Time Interval (TTI)

TTI = multiple of minimum interleaving period (10 ms) = 10, 20, ..., 80 ms

TTI = 2 ms

HS-DSCH

TBS

TB

DCH₁

DCH₂

TTI

TTI
Radio frame and slot timing

- Primary SCH
- Secondary SCH
- Any CPICH
- P-CCPCH
- k:th S-CCPCH
- PICH for k:th S-CCPCH
- AICH access slots
- Any PDSCH
- n:th DPCH
- p:th F-DPCH
- HS-SCCH Subframes

- Slot synchronization
- Radio frame synchronization and P-SC
- Phase reference for SCH, P/S-CCPCH, AICH and PICH
- SFN – Timing ref. for all PhCHs
R6: Physical layers models – UL

- 1 CCTrCH (RACH) or 2 CCTrCH (RACH + E-DCH)
 - 1 RACH CCTrCH = 1 RACH (no multiplexing)
 - 1 E-DCH CCTrCH = 1 E-DCH TrCH, which is carried on the E-DPDCH(s) physical channel(s)

- 1 HS-DPCCH employed for reporting
 - HS-DSCH transport block acknowledgement (ACK/NACK)
 - Channel Quality Indicator (CQI)

- 1 E-DPCCH physical channel carries
 - E-DCH TFCI
 - E-DCH HARQ information
R6: Physical layers models – DL (1/2)

- Multiple CCTrCHs can be transmitted simultaneously to one UE
- Pilot, TPC bits and TFCI are time-multiplexed with complex scrambling onto the same dedicated physical channel
- TPC bits are on F-DPCH(s) for HS-DSCH(s) without a DCH
- A PCH and one or several FACHs can be encoded and multiplexed together, forming a CCTrCH
- A PCH is associated with a separate PICH
- BCH always mapped onto P-CCPCH without any other TCH
- Each HS-SCCH carries HS-DSCH-related L1 signaling for one UE (i.e., TFRI, HARQ info and UE Id via UE-specific CRC) for each HS-DSCH TTI
R6: Physical layers models – DL (2/2)

- E-DCH active set can be ≤ DCH active set
- E-DCH ACK/NACK are transmitted on E-HICH
- E-DCH absolute grant is transmitted by the serving E-DCH cell on the E-AGCH
- E-DCH relative grants can be transmitted on E-RGCH by each cell of the E-DCH active set
- There is one serving E-DCH RLS (containing the serving E-DCH cell) and, optionally, one or several non-serving E-DCH radio link(s)
- For all UE categories, the uplink DCH capability is limited to 64 kb/s when the E-DCH is configured for the radio link
Mapping of bearers onto TCHs

CS domain

Conversational
- TM RLC
- UM RLC
- DCH

Streaming
- TM RLC
- UM RLC
- AM RLC
- DCH

PS domain

Interactive
- AM RLC
- RACH/FACH
- (E-)DCH/DCH

Background
- AM RLC
- (E-)DCH/HS-DSCH
- (E-)DCH/DCH

GB traffic

NGB traffic

Mapping of bearers onto TCHs

Conversational
- TM RLC
- UM RLC
- DCH

Streaming
- TM RLC
- UM RLC
- AM RLC
- DCH

Interactive
- AM RLC
- RACH/FACH
- (E-)DCH/DCH

Background
- AM RLC
- (E-)DCH/HS-DSCH
- (E-)DCH/DCH
HSDPA: Fundamental features

Included in HSDPA
- Adaptive Modulation and Codes
- H-ARQ
- TTI = 2 ms
- Enhanced Packet Scheduler

Enhanced in HSDPA
- Multi-code operation

Basic WCDMA technology

Excluded from HSDPA
- TF semi-static attributes
- Soft Handover
- Fast power Control
- Variable SF
HSDPA: Radio channels – DL (1/2)

- **HS-DSCH**
 - Defined in R5 and later releases and time/code shared by several terminals
 - No fast PC, but link adaptation by varying effective coding rate (HARQ), number OVSF codes and modulation (QPSK/16QAM)
 - Data channel always associated with a DPCH (or F-DPCH) and one or several HS-SCCHs for related L1 signaling transmission
 - TF: *dynamic part* (TB size; redundancy version/constellation; and modulation scheme), *static part* (TTI = 2ms; turbo-coding 1/3; and CRC = 24 bits)
 - Mapped onto HS-PDSCH

- **HS-PDSCH**
 - Data channel with SF = 16, multi-code transmission (up to 15 Walsh or OVSF codes), QPSK or 16QAM modulation
 - Transmitted over the entire cell or over only part of the cell using, e.g. using beam-forming antennas
HSDPA: Radio channels – DL (2/2)

- **HS-SCCH**
 - Fixed-rate physical channel (SF = 128) used to carry downlink L1 signaling related to downlink HS-DSCH transmission
 - UE ID mask, which identifies the user to be served in the next TTI
 - TFRI (TB size, modulation scheme and n. of OVSF codes per TTI)
 - HARQ-related information (new data unit or a retransmission that should be combined, associated ARQ process and information about the redundancy version)
 - HS-SCCH power slow power control (offset relative to the pilot bits of the associated DPCH)
HSDPA: Radio channels – UL (1/1)

- **HS-DPCCH**
 - Fixed-rate (SF 256) used to carry HARQ acknowledgement (ACK/NACK) and channel quality indication (CQI)
 - One HS-DPCCH on each radio link
 - Can only exist together with an uplink DPCCH for its power control operation, the DPDCH is used as a return channel and user data transmission in UL
HSDPA: physical layer structure

Slot

Downlink

UL associated DPCH (for each HSDPA user)

DL associated DPCH or F-DPCH (for each HSDPA user)

HS-SCCH

HS-PDSCH #1

HS-PDSCH #15

2ms TTI

~ 7.5 slots

Uplink

CQI

CQI

ACK

CQI

HS-DPCCH

UL associated DPCH (for each HSDPA user)
HSDPA: UTRAN end MAC architecture

To MAC-d flow 1

To MAC-d flow 2

Max 15 Logical channels per MAC-d flow (UE) using different Channel/Type field (C/T) in MAC-d header, Scheduling Priority Indicator (SPI) = 0-15) in NBAP and CmCH-PI in FP using different AAL2 CID

Max 8 priority queues per MAC-d flow and per UE (RRC connection)

Associated Downlink Signalling (HS-SCCH)

Associated Uplink Signalling (HS-DPCCH)

One per UE (RRC connection)
HSDPA: peer-to-peer communication (1/2)

- **MAC-d PDU (HS-DSCH)**
 - Format equals the format for non HS-DSCH case

- **MAC PDU (HS-DSCH)**
 - One MAC-hs header
 - One or more MAC-hs SDUs where each MAC-hs SDU equals a MAC-d PDU
 - A maximum of one MAC-hs PDU can be transmitted in a TTI per UE
 - The MAC-hs header is of variable size
 - The MAC-hs SDUs in one TTI belongs to the same reordering queue
HSDPA: peer-to-peer communication (2/2)

MAC-hs PDU

MAC-d PDU
HSDPA: adaptive modulation and coding

- Highest 1st Tx throughput
- MCS1 is the most spectral efficient allocation

<table>
<thead>
<tr>
<th>MCS</th>
<th>Modulation</th>
<th>Effective Coding Rate</th>
<th>Bits per TTI</th>
<th>Peak Rate with 1 code (kb/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>QPSK</td>
<td>1/4</td>
<td>240</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>1/2</td>
<td>480</td>
<td>240</td>
</tr>
<tr>
<td>3</td>
<td>QPSK</td>
<td>3/4</td>
<td>720</td>
<td>360</td>
</tr>
<tr>
<td>4</td>
<td>16 QAM</td>
<td>1/2</td>
<td>960</td>
<td>480</td>
</tr>
<tr>
<td>5</td>
<td>16 QAM</td>
<td>3/4</td>
<td>1440</td>
<td>720</td>
</tr>
</tbody>
</table>

Theoretical Link Capacity
Link Level Simulation

Received Data Bit E_b/N_0 (linear scale)

Channelisation Code Capacity (kb/s)

Power Efficiency

Code Efficiency

MCS 1 (QPSK, ¼)
MCS 2 (QPSK, ½)
MCS 3 (QPSK, ¾)
MCS 4 (16 QAM, ½)
MCS 5 (16 QAM, ¾)

700 kb/s x 15 OVSF codes = 10.5 Mb/s
HSDPA: AMC and multi-code Tx

- Higher order MCS when all available codes are used is the most spectral efficient allocation.
HSDPA: Link Adaptation (LA)

- Channel Quality Indicator (CQI)
 - Reported based on RRC commands
 - Period: 2, 4, 8, 10, 20, 40, 80, 160 ms
- Power measurements on associated DL DPCH
- HARQ Acknowledgement (DL “BLER”)
- MAC/hs buffer size
 (Optimal link adaptation functionality makes use of all the above information)
HSDPA: fast Hybrid ARQ

- **Stop And Wait (SAW) protocol**
 - One HARQ entity handles the hybrid ARQ functionality for one user
 - Tx of current TB until it has been successfully received before initiating Tx of the next one
 - Up to 8 SAW-ARQ processes may transmit in parallel over different TTIs for a UE (RRC-connection)

- **Chase combining (CC)**
 - Every retransmission is simply a replica of the coded word employed for the first transmission
 - The decoder at the receiver combines these multiple copies of the transmitted packet weighted by the received SNR prior to decoding

- **Incremental redundancy (IR)**
 - Retransmissions include additional redundant information that is incrementally transmitted if the decoding fails on the first attempt
 - This causes the effective coding rate to increase with the number of retransmissions
HSDPA: MAC/hs flow control

- TS 25.321: Flow control is provided independently by MAC-d flow for a given MAC-hs entity
HSDPA: flow control mechanism

MAC-hs buffer size (per MAC-hs entity)

High threshold

Increase number of CRedits

Low threshold

“Low” timer expires

“High” timer expires

Decrease number of CRedits

Time
HSDPA: MAC/hs packet scheduling

- For each TTI, PS determines which UE (RRC connection and thus which priority queue), or UEs (code-multiplexing), the HS-DSCH should be allocated to and, in collaboration with the link adaptation mechanism, at what data rate

- Scheduling principles
 - Radio resources allocated sequentially (round-robin scheduling among RRC connection)
 - Channel and priority dependent scheduling
HSUPA: Fundamental features

- Faster uplinks with lower latency and improves RL efficiency **without changing uplink modulation**

- The main characteristics of HSUPA are
 - Node B controlled uplink scheduling
 - HARQ protocol between the UE and Node B
 - Possibility of shorter TTI (2 ms) and smaller SF

<table>
<thead>
<tr>
<th>Effective Coding Rate</th>
<th>User data rate with 1 code (kb/s)</th>
<th>User data rate with 2 codes (Mb/s)</th>
<th>User data rate with 4 codes (Mb/s)</th>
<th>User data rate with 6 codes (Mb/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/3</td>
<td>640</td>
<td>1.28</td>
<td>2.56</td>
<td>3.84</td>
</tr>
<tr>
<td>3/4</td>
<td>720</td>
<td>1.44</td>
<td>2.88</td>
<td>4.32</td>
</tr>
<tr>
<td>4/4</td>
<td>960</td>
<td>1.92</td>
<td>3.84</td>
<td>5.76</td>
</tr>
</tbody>
</table>
HSUPA: Radio channels – UL

- **E-DCH**
 - Available in 3GPP R6 and later releases
 - Possibility of changing rate each TTI
 - Supports inner-loop power control and link adaptation by varying the effective coding (HARQ), spreading factor and transmission power
 - TF: *dynamic part* (TB size and redundancy version), *semi-static part* (TTI 2 or 10 ms), *static part* (turbo-coding 1/3, size of CRC = 24 bits)
 - Mapped onto E-DPDCH

- **E-DPCH**
 - E-DPDCH and E-DPCCH I/Q code-multiplexed with complex scrambling
 - E-DPDCH supports multi-code transmission and SF from 256 down to 2
 - One E-DPCCH with SF 256 transmits L1 control information associated with E-DCH (E-TFCI = TB size, RSN, happy bit)
 - E-DPCCH is transmitted with a *power offset* relative to the DPCCH
HSUPA: Radio channels – DL

- E-RGCH
 - Fixed-rate physical channel with SF 128 carrying uplink E-DCH relative grants

- E-AGCH
 - Fixed-rate physical channel with SF 256 carrying uplink E-DCH absolute grants

- E-HICH
 - Fixed-rate physical channel with SF 128 carrying the uplink E-DCH HARQ acknowledgement indicator
HSPA: physical layer models

DPCH Active Set: Cell d₁, d₂, d₃, d₄
E-DCH Active Set: Cell e₅ (Serving E-DCH), e₁, e₂
Radio Link Set (RLS): Cell e₅, e₁, d₁, d₂
HSUPA: UE-end MAC architecture
HSUPA: UTRAN-end MAC architecture
HSUPA: Node B scheduling (1/2)

- Node B issues **scheduling grants** to indicate to UE the maximum amount of uplink resources it may use
 - Control of max **E-DPDCH/DPCCH power ratio** of active HARQ processes
 - Used only for E-DCH TFC selection algorithm in the UE
 - Sent once per TTI or at a slower rate

- **Absolute grants**
 - E-RNTI of the UE or group of mobiles for which the grant is intended
 - Max E-DPDCH/DPCCH power ratio (*offset*) the UE is allowed to use
 - HARQ process activation flag (in case of a 2-ms TTI)

- **Relative grants**
 - Increase or decrease the resource limitation (power ratio) compared with the previously used value
 - From serving E-DCH RLS: ‘up’, ‘hold’ or ‘down’
 - From non-serving E-DCH RL: ‘hold’ or ‘down’
HSUPA: Node B scheduling (2/2)

- The UE requests resources from BSs in the form of scheduling information and happy bit.
- The UE is not ‘happy’ when it has power available to send data at higher rates and the total buffer content would require more than X ms to be transmitted with the current SG times the ratio of active processes to the total number of processes (1 for TTI 10 ms).
- Scheduling information:
 - Sent to the serving E-DCH RLS in a MAC-e PDU
 - Logical channel ID of the highest priority channel with data in its buffer
 - UE buffer occupancy: status of the highest priority logical channel with data in its buffer
 - UE power headroom (UPH): ratio of the maximum UE transmission power and the corresponding DPCCH code power
HSUPA: Non-scheduled transmissions

- SRNC may configure the UE for non-scheduled transmission
- UE may **send data at any time using the E-DCH**, without receiving any scheduling command from the Node B
- Non-scheduled transmissions are defined **per MAC-d flow**
- The resource for non-scheduled transmission (non-scheduled grant) is provided by the SRNC in terms of the **maximum number of bits that can be included in a MAC-e PDU**
- The logical channels are served in the **order of their priorities until the non-scheduled grant and scheduled grants are exhausted**, or the maximum transmit power is reached
References

 (Contact Mr. Geoff Farrell @ Wiley gfarrell@wiley.co.uk)

See also: