Communication modes

- Unicast
 - One sender
 - One receiver
- Broadcast
 - One sender
 - All receive
- Multicast
 - One sender
 - N receivers
- Anycast
 - One sender
 - One receiver on a group
Forwarding modes

- **Point-to-point**
 - From single ingress to single egress
 - 'link'

- **Point-to-multipoint**
 - From single ingress to multiple egress
 - 'tree'

- **Multipoint-to-multipoint**
 - From multiple ingress to multiple egress
 - 'mesh'

Multicast

- It is all about determining where
 - are the receivers
 - Is the knowledge of receivers maintained
 - Broadcast vs multicast
 - the replication of packets should be done
 - Is there knowledge about service within the network
 - Source replication vs network replication
Multicast forwarding

- Problem
 - How to form a point-to-multipoint structure that is efficient
 - e.g. Shortest path tree
 - Reverse path forwarding
 - Logic:
 - Send out replicate of the packet to all interfaces except to the one with the shortest path to the sender
 - That is where the packet should have come in the first place
 - Dropped duplicates along the way on the network
 - Wasted resources
 - From the sender to all other stations on the network
 - Wasted resources

Forwarding

- Unicast forwarding
 - Forwarding of packets towards destination via the shortest path
 - SPF is based on weighting of IGP
- Reverse path forwarding
 - Forwarding of packets away from the shortest path to the sender
 - No knowledge of the destination only about the source
- Reverse path forwarding check
 - Accept packets only from the link which points to SPF towards source
Multicast

1. Router R1 checks: Did the data packet arrive on the interface with the shortest path to the Sender? Yes, so it accepts the packet, duplicates it, and forwards the packet out all other interfaces except the interface that is the shortest path to the sender (i.e., the interface the packet arrived on).

2. Router R2 accepts packets sent from Router R1 because that is the shortest path to the Sender. The packet gets sent out all interfaces.

3. Router R3 drops packets that arrive from Router R4 because that is not the shortest path to the sender. Avoids cycles.

Building an intelligent tree

- Requirements
 - We know where the receivers are
 - Group management protocol (IGMP)
 - Receivers express their existence to the network
 » join, leave
 - We are able to communicate that knowledge within the network
 - Multicast routing protocol (PIM)
 - Activation of RPF on selected downstream links
Building an intelligent tree

- If we want to minimize the state information within the core we can build a **shared tree** for each sender
 - A single point within the network acts as a relay agent
 - Traffic in unicast sent to relay point which then multicasts it forward in RPF-tree
 - Efficiency depends on the distribution of sources and receivers in relation to location of relay-point
 - Usually very inefficient due to sparse nature of receivers and variable locations of sources
Building an intelligent tree

- If we want to achieve maximal efficiency, we must use **shortest paths toward source** of the information not towards common replication point
 - Use explicit source rooted RPF-tree
 - Joining/grafting to multicast tree at the lowest level possible
 - Pruning from the tree if there are no receivers below
Multicast

PIM

- Is a combination of shared tree and source specific tree operation
 - Infrequent packets are replicated in a single point (shared tree)
 - Randevouz point
 - High data volumes are transferred in more optimal way (source specific tree)
 - Decision based on predefined policy
 - Data rate greater than x
 - Amount of bytes greater than x

Multicast Distribution Trees

- Source specific tree
 - Takes more resources from the network
 - Amount of state information is dependent of $N(S,G)$
 - Every source (S) has its own distribution tree per group (G)
 - Optimal path from the source to all receivers within the group
 - Minimizes the IGP cost towards source from each receiver
 - Optimal for one-to-many distribution (point-to-multipoint)

- Shared trees
 - Uses less resources from the network
 - Amount of state information is dependent of $N(*,G)$
 - All sources (*) are mapped into single distribution tree per group (G)
 - Usually suboptimal path from the source to all receivers within the group
 - Unless RP is rooted at the source
1. Receiver 1 joins the multicast group. Designated Router DR2 sends a Join message toward the RP. Periodically, DR2 resends the Join message in case it was lost.

2. Routers along the path to RP create router state for the group, adding themselves to the shared tree.

1. Sender begins sending to a multicast group.
2. Designated Router DR1 encapsulates the packets from Sender in Register messages and unicasts them to RP.
3. The RP decapsulates the packet and sends it out the shared tree.
1. **DR2** sees traffic from **Sender** at a rate > threshold. It sends a source specific join request towards **Sender**.

2. **DR1** adds **DR2** to the source specific tree for **Sender**.

3. **DR2** sees traffic from **Sender** coming from RPF tree, it sends a Source Specific Prune message toward **RP**. This removes **DR2** from the shared tree.

4. **RP** sees traffic from **Sender** at a rate > threshold. It sends source specific join request toward **Sender**.

5. **DR1** adds **RP** to the source specific tree for **Sender**.

6. **RP** sees unencapsulated traffic from **Sender** and sends a Register Stop message to **DR1**, **DR1** then stops sending encapsulated traffic to **RP**.
Rendezvous Point (RP)

- Location of RP can be based on
 - Static configuration of served groups
 - Bootstrap process with priorities
 - Anycast operation

- Bootstrap Router (BSR)
 - Dynamically elected (like OSPF DR election process)
 - Constructs a set of RP IP addresses based on received Candidate-RP messages

Interdomain multicast

- Need to transfer multicast routing information across domain borders
 - Active groups (senders and receivers)
 - Multicast Source Discovery Protocol (MSDP)
 - Unicast routes for RPF
 - Multicast BGP (MBGP)
1. Source registration in to PIM-RP is announced to MSDP peers

2. Receiver joins to group via PIM-SM
3. Traffic flows from the source to receiver via shared trees

4. Source specific tree optimisations are done for the traffic flow
MBGP

- Multiprotocol Extensions to BGP (RFC 2283).
 - Tag unicast prefixes as multicast source prefixes for intra-domain multicast routing protocols to do RPF checks.
 - Why same routes two times
 - Allows for inter-domain RPF checking where unicast and multicast paths are non-congruent
 - Inter-provider relationships
 - Policies ;-)
MBGP

- Different NLRI for unicast and multicast routes
 - Address Family Information (AFI) = 1 (IPv4)
 - SAFI = 1 (NLRI is used for unicast)
 - SAFI = 2 (NLRI is used for multicast RPF check)
 - SAFI = 3 (NLRI is used for both unicast and multicast RPF check)
 - Allows for different policies between multicast and unicast
 - For example different ingress/egress point for unicast and multicast traffic

MPLS VPN multicast

- Multicasting in MPLS VPN is not straight forward
 - Optimal replication requires state in core routers (P)

- Separate Tree per-set-of MVPNs "Inclusive Mapping"
- Separate Tree per-set-of C-(S,G)s "Selective Mapping"

- Decreasing
 - P-router state
 - Bandwidth efficiency
- Increasing
 - P-router state
 - Bandwidth efficiency

© Marko Luoma 2008
Scalability

- **Optimizing performance**
 - A given customer (multicast) packet should traverse a given service provider link at most once
 - Deliver customer multicast traffic to only PEs that have (customer) receivers for that traffic
 - Deliver customer multicast traffic along the “optimal” paths within the service provider (from the ingress PE to the egress PEs)

- **Optimizing state-space**
 - The amount of state within the service provider network required to support Multicast in 2547 VPN service should be no greater than what is required to support unicast in 2547 VPN service
 - The overhead of maintaining the state to support Multicast in 2547 VPN service should be no greater than what is required to support unicast in 2547 VPN service

Data plane

- How to tunnel multicast traffic in Service Provider network
 - By using p2mp LSP’s
 - Static distribution trees
 - GRE encapsulation and IP multicast forwarding
 - Multicast distribution trees
 - Aka multicast service
 - Unicast tunneling with ingress replication
- How to exchange multicast routing information with service provider network
 - MBGP
 - PIM
 - MSDP
 - Tunneling through
Multicast

![Multicast Network Diagram]

- **Ucast Edge**
- **Mcast Edge**
- **MPLS Core**
- **Mcast Content**
- **Mcast/Ucast Internet Peering**