S-38.3192 Verkkopalvelujen tuotanto
S-38.3192 Network Service Provisioning
Lecture 12: Pricing

Background

- Providers are companies that operate on normal business logic
 - Maximize stock value and profit of the company
 - Cover the costs from
 - Investments (capital expenditure - capex)
 - Operation (operational expenditure - opex)
 - Their operation regime is somewhat regulated
 - Certain telecom services are regulated inorder to prevent
 - Monopolism or too low competition
 - Over charging
 - Barriers of market introduction from new players
Billing process

- Billing customers requires that
 - Billing templates are created for different customer profiles
 - Charging policy for different services are created
 - Accounting of charged events is instantiated
 - All events related to accounted charging policy are collected
 - Event Detail Record (EDR) vs Call Detail Record (CDR)
 - Content of EDRs are metered
 - Traffic rate
 - Duration
 - Source, destination
 - Service (application, QoS)
Accounting

- Is parallel stream for billing
 - Revenues stream that is exchanged between fellow providers
 - Cost sharing
 - Revenue sharing
 - Virtual operators cost allocations
 - Originated costs and depreciations

Background

- There are no direct implications from costs to price
 - Market dictates the price of the sold goods
 - Price should always cover the costs that were originated from the manufacturing and selling the good
 - This is not always true
 - Regulation may also set standards for the pricing
 - Cost of the selling the good forms the basis for price
 - Virtual network operators are charged based on originated costs
 - Cable plants are leased based on fraction of originated cost of whole cable plant
 - Limits of pricing are regulated
 - Roaming costs
 - International call pricing
Market price

- Based on the utility of used service
 - Value of the service is dependent on
 - properties of communication system/protocol
 - what is the purpose of communication
 - Some services are more profitable than others
 - Rarely used and therefore not heavily competed
 - SMS (cheap but profitable)
 - Conferencing (expensive but not so profitable)
 - Well accepted charging model
 - Time based for voice calls
 - Flat rate for data
 - Complexity of control
 - Flexible: data service
 - Difficult: video delivery

Valuation example

- **Mobile call**
 - Used link resources per minute
 - Rate: 13kbps
 - 780 000 bits in a minute
 - Hard-real-time requirement
 - Voice channel reservation
 - price: 7 cents

- **SMS**
 - Used link resources per message
 - 160 characters
 - 8 bits per character
 - In total: 1280 bits
 - Non real-time requirement
 - Signalling channel
 - price: 7 cents

- 1:600 price difference based on originated costs from providing the service
 - Including only the air interface resource usage
 - Cost of the SMS-subsystem should be included into figure
Market price

- Is a game where there is a NxM situation
 - N customers
 - M providers
- Each individual player tries to maximize his/her utility
 - Customers get their service as cheap as possible
 - Providers maximize their profit
- In optimal situation system has maximal utility
 - Nash equilibrium
 - Every one takes into account other player group incentives
 - Customers compare offerings of providers and select the one that offers services at the best price/quality
 - Providers offer services that gain best market value for the operation

Utility

- Describes the value of the service offering
 - Increases with the function of level of service in contrast to expected service
 - Decreases with the function of cost of service
- Shape of the utility curve is dependent on the service type
 - Data service (tcp):
 - Throughput is inverse proportional to
 - RTT
 - Squareroot of packet loss
 - Voice service (udp):
 - Quality is
 - Inverse proportional to one-way delay and packet loss
 - Step-function of throughput to codec-rate
 - Function of codec
Price vs SLA

- **SLA has direct implication to price**
 - Availability of service indicates how
 - The network and access has to be engineered
 - The service has to charged inorder cope with litigations
 - Support services are usually labor intensive
 - Increase the opex very fast
 - Where is the demarcation point of the service
 - Toll trucks

<table>
<thead>
<tr>
<th>Availability</th>
<th>Per annum</th>
<th>Per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>36.5 d</td>
<td>16.85 h</td>
</tr>
<tr>
<td>95%</td>
<td>18.25 d</td>
<td>8.42 h</td>
</tr>
<tr>
<td>98%</td>
<td>7.3 d</td>
<td>3.37 h</td>
</tr>
<tr>
<td>99%</td>
<td>3.65 d</td>
<td>1.68 h</td>
</tr>
<tr>
<td>99.5%</td>
<td>1.83 d</td>
<td>50.54 min</td>
</tr>
<tr>
<td>99.8%</td>
<td>17.52 h</td>
<td>20.22 min</td>
</tr>
<tr>
<td>99.9%</td>
<td>8.76 h</td>
<td>10.11 min</td>
</tr>
<tr>
<td>99.95%</td>
<td>4.38 h</td>
<td>5.05 min</td>
</tr>
<tr>
<td>99.99%</td>
<td>52.56 min</td>
<td>1.01 min</td>
</tr>
<tr>
<td>99.999%</td>
<td>5.26 min</td>
<td>6.06 s</td>
</tr>
</tbody>
</table>

© Marko Luoma 2008
Communication costs

• Costs for the communication depends on
 – Where the customer is
 • Is there already access device
 • Is there already cable plant and who owns it
 – Where the customer communicates
 • Only in own network (marginal cost per bit: low)
 • Through peering relationships (marginal cost per bit: medium)
 • Through transit providers (marginal cost per bit: high)

Communication costs

• Marginal cost of a bit
 – Within own network infrastructure
 • When network is build the investment is done
 – Marginal cost per bit is zero
 • If we take into account depreciation of the network investment
 – Marginal cost per bit is not zero
 – Outside own infrastructure
 • Premium is paid
 – Based on the negotiated contracts with other providers
 » Transit
 » Peering
Network originated costs

- Network structure and delivered services cause variable costs
 - New network is always cheaper due to lack of legacy support
 - Integration of old and new leads to sub-optimal operation
 - Slogan: Router port is expensive – switch port is cheap
 - Holds for certain extent – should not be mantra
 - Transport technology and network technology should be well aligned
 - Not competing technologies
 - Large intelligent transmission and large intelligent switching
 - Cost reduction methods
 - Minimize the amount of vertical layers for service delivery
 - Minimize the amount of supported technologies and devices
 - Minimize the amount of different service types

Network originated costs

- IP centric network design
Network originated costs

- Transport centric network design