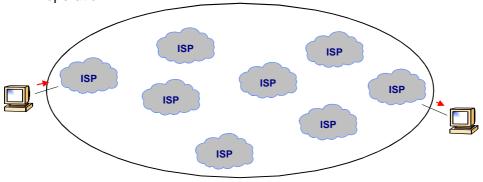


S-38.3192 Verkkopalvelujen tuotanto S-38.3192 Network Service Provisioning

Lecture 11: Peering

Part of the material presented in these slides is based on BGP lectures of Olivier Bonaventure www.info.ucl.ac.be/people/OBO/BGP/



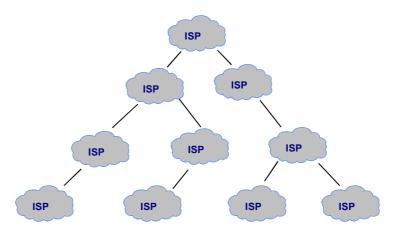
Lic.(Tech.) Marko Luoma (2/37)

- The value of Internet is in global reachability
 - Reachability comes from co-operative peering efforts
 - Customer peering (Customer-Provider-Customer relationship)
 - Shared cost peering (Provider-Provider relationship)
- There are roughly 48000 assigned AS numbers from which about 24000 are advertised to BGP i.e. are players
 - 23304 of them are Stub ASs
 - 117 are pure transit providers
 - 4172 do both


- · The structure of Internet is chaos
 - Thousands of service providers with highly varying principles in their operation

Lic.(Tech.) Marko Luoma (4/37)

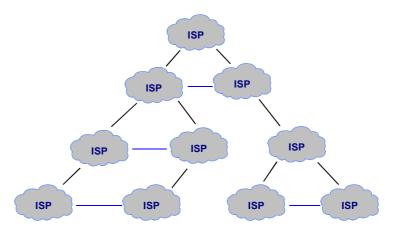
- How packet finds its route through the black box
 - BGP forms a structured layout of the whole Internet for packet level transport
 - Reflects the semi-optimal contractual agreements between operators along the route of the packet
- Why accepting packets from fellow ISP
 - Economic impact
 - · Transit traffic
 - Reciprocity
 - · Cost reduction


Agreements

- · Form the basis between inter-provider communications
 - Small ISPs are customers of larger ones
 - · Larger ISPs deliver their customer traffic as their own traffic
 - · Larger ISPs deliver their customer traffic as transit traffic
 - Equal size providers exchange their traffic pro bonus
 - Both save money by interconnecting directly rather than through 3rd party
 - Mutual agreement for exchanging only their customer traffic

Lic.(Tech.) Marko Luoma (6/37)

Strict hierarchy

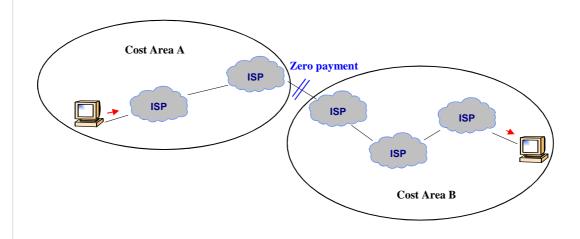

Strict hierarchy

- Based on structural and regulated manner of forming customer/provider relationships
 - Valid in telco operations
 - Operators for a chain of customer/provider relationships
 - Based on regulation of operational arena
 - Local operators
 - Long distance operators
 - International operators
 - · Cash flows to the top of the hierarchy
 - Local operators collect the money from end users
 - Middle layers take their premiums

Lic.(Tech.) Marko Luoma (8/37)

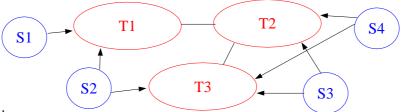
Loose hierarchy

Loose hierarchy


- Local providers compete the local market but share common need to exchange their customer traffic on a local level
 - It is profitable for all to have direct exchange of traffic without 3rd parties
 - · Better marginal revenue
 - Requires
 - · Interconnection points
 - · Bilateral agreement to establish equality
 - Zero payment principle
 - » Both parties benefit from peering
 - » No mutual transfer of money

Lic.(Tech.) Marko Luoma (10/37)

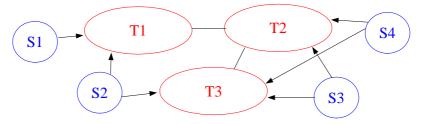
- · Naturally loose in hierarchy
- Local ISPs maximize their revenue by minimizing their transit traffic
- Same structure on all levels of hierarchy
- Any connection through the Internet is formed with chain of customer/provider relationships with a single zero payment border
 - Cost of connection is therefore divided into two
 - · From source to top of the chain
 - From destination to top of the chain
 - Peering does not cover transit traffic
 - Only one zero payment border



Lic.(Tech.) Marko Luoma (12/37)

Transit domain

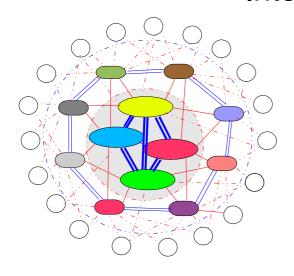
 A transit domain allows external domains to use its own infrastructure to send packets to other domains



- Examples
 - FuNET, NorduNET, GEANT, Internet2, BT, Telia, Level3,...

Stub domain

- A stub domain does not allow external domains to use its infrastructure to send packets to other domains
 - A stub is connected to at least one transit domain
 - Single-homed stub: connected to one transit domain (S1)
 - Dual-homed stub: connected to two transit domains (S2-S4)

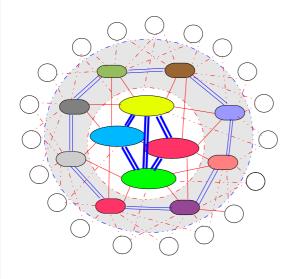


Lic.(Tech.) Marko Luoma (14/37)

Stub domain

- · Examples:
 - Content-rich stub domain
 - Large web servers : Yahoo, Google, MSN, TF1, BBC,...
 - Access-rich stub domain
 - ISPs providing Internet access via CATV, ADSL, ...
 - Saunalahti, Kolumbus, Welho etc

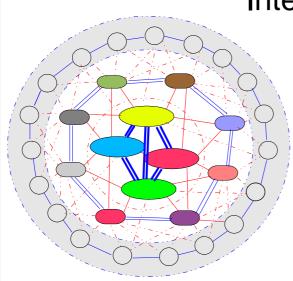
- Tier-1 ISPs
 - Dozen of large ISPs interconnected by sharedcost peering arrangements
 - Form the core of the Internet
 - Provide transit service for T2/T3 service providers


Lic.(Tech.) Marko Luoma (16/37)

Tier-1 service providers

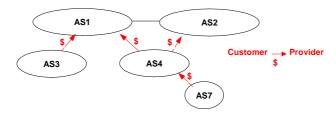
- AOL Transit Data Network (AS1668)
- AT&T (AS7018)
- Global Crossing (GX) (AS3549)
- Level 3 (AS3356)
- Verizon Business (formerly UUNET) (AS701)
- NTT Communications / (formerly Verio) (AS2914)
- Qwest (AS209)
- SAVVIS (AS3561)
- Sprint Nextel Corporation (AS1239)

- Dozens of other providers are also marketed as T1 where as they are not
 - They have
 - Transits
 - · Paid peering



- Tier-2 ISPs
 - Regional or National ISPs
 - Customer of T1 ISP(s)
 - Provider of T3 ISP(s)
 - shared-cost with other T2 ISPs

Lic.(Tech.) Marko Luoma (18/37)


- Tier-3 ISPs
 - Smaller ISPs, Corporate Networks, Content providers
 - Customers of T2 or T1 ISPs
 - shared-cost with other T3 ISPs

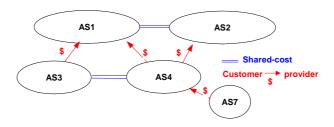
Customer-provider peering

- Principle

- Customer sends to its provider its internal routes and the routes learned from its own customers
 - Provider will advertise those routes to the entire Internet to allow anyone to reach the Customer
- Provider sends to its customers all known routes
 - Customer will be able to reach anyone on the Internet

Lic.(Tech.) Marko Luoma (20/37)

Shared-cost peering


- Principle

- PeerX sends to PeerY its internal routes and the routes learned from its own customers
 - PeerY will use shared link to reach PeerX and PeerX's customers
 - PeerX's providers are not reachable via the shared link
- PeerY sends to PeerX its internal routes and the routes learned from its own customers
 - PeerX will use shared link to reach PeerY and PeerY's customers
 - PeerY's providers are not reachable via the shared link

Shared-cost peering

- AS1 send routes of AS{1,3,4,7} to AS2
- AS2 sends routes of AS{2,4,7} to AS1
 - Not AS3 while those routes come from shared-cost peering
 - · Routes from shared-cost peering are not advertised to providers

Lic.(Tech.) Marko Luoma (22/37)

Peering considerations

- To peer, or not to peer: that is the question:
 - To peer:
 - T2,T3,Tx: Lowers the transit cost
 - Not to peer:
 - T1: Keep the cartel situation
 - T2,T3,Tx:
 - Keep the transit from the lower level
 - Regulate the amount of traffic incoming from content rich network
 - Force to direct customer relationship

Peering considerations

- To de-peer or not to de-peer, that is the question
 - To de-peer
 - T1:
 - heavy unbalance in traffic amount
 - Transit discounting (stealing customers)
 - T2,T3,Tx: unbalance in traffic matrix
 - Not to de-peer
 - T1:
 - Litigation process
 - Peer pressure
 - T2,T3,Tx: Transit price

Lic.(Tech.) Marko Luoma (24/37)

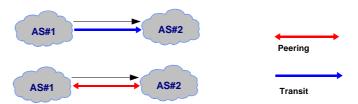
Peering strategies

- Ethically sound (selection)
 - Direct approach:
 - Open negotiation
 - Migration tactics:
 - Partial peering
 - · Paid peering
 - Discriminative transit selection
 - Potential peers are not considered as possible transits

- Ethically questionable (deception)
 - Traffic manipulation
 - Traffic is forced to direction that is known to generate costs for potential peer
 - Route manipulation
 - Incoming traffic is guided to routes that are known to generate costs for potential peer

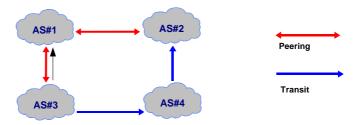
Direct Approach

- In direct approach peering negotiations are established with open cards
 - Official invitation to peered AS to start negotiations
 - Results
 - Peering formed
 - » Direct
 - » Partial
 - » Conditional
 - Peering not formed



Lic.(Tech.) Marko Luoma (26/37)

Migration tactics

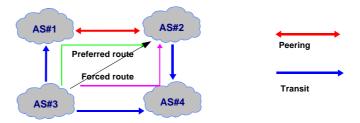

- Initially transit connection is bought with option to peer when conditions are met
 - Incentive of accumulated cash flow for period of time
 - Risk of not having peering conditions met or changed conditions over the time

Selected transit

 Transit connection is bought from provider which is not a candidate of future peering

Lic.(Tech.) Marko Luoma (28/37)

Traffic Manipulation


- · Force traffic to routes that make peering look attractive
 - After while initiate peering negotiations
 - · Upstream traffic does not generate fast incentives

Traffic Manipulation

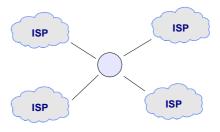
- · Force traffic to routes that make peering look attractive
 - Stop advertising routes to cheap directions
 - Falsely inject AS#2 to path vectors in direction of AS#1
 - Loop detection prevents routes to be installed at AS#2

Lic.(Tech.) Marko Luoma (30/37)

Internet peering points

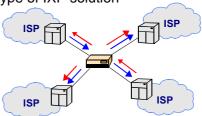
- Local providers aim to minimize their expenses by interconnecting at local level
 - Local exchange points
 - ..CIX (Commercial Internet eXchange)
 - MAE.. (Metropolitan Area Exchange)
 - NAP (Network Access Point)
 - IXP (Internet eXchange Point)
 - EP (Exchange Point)
 - Bilateral interconnections

Internet exchange


- Commercial starting point
 - A company builds an interconnection point to
 - · Gain revenue from peering traffic
 - · Gain revenue from transmission links coming to exchange
 - · Gain revenue from transit traffic
- Co-operative starting point
 - Neutral partner runs the exchange
 - · None of the partners owns the premises
 - · None of the partners owns the transmission links into exchange
 - · None of the partners owns the equipment in exchange

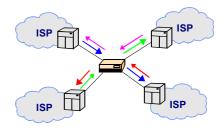
Lic.(Tech.) Marko Luoma (32/37)

Internet exhange


- · Build over L2 technology
 - Ethernet, ATM, FrameRelay switch
- Each provider connects into shared media with transmission link terminated to border router of provider
 - Everybody is able to see everybody

Internet exhange

- · Peering agreements can be based on
 - Multilateral agreements
 - · Every partner is peering with every other partner
 - All border routers share a common subnet which is not filtered
 - » Ideal situation for Ethernet type of IXP solution



Lic.(Tech.) Marko Luoma (34/37)

Internet exhange

- Bilateral agreements
 - · Partners peer only based on bilateral agreements
 - Requires L2 technology that is able to create virtual connections between peering partners
 - » ATM PVC
 - » FR DLCI
 - » Ethernet VLAN

Internet exhange

- Multilateral peering reguires either
 - Separate BGP session between each border router
 - N(N-1) sessions
 - IXP offers route server capabilities
 - · Only N sessions
 - BGP-route reflector

Lic.(Tech.) Marko Luoma (36/37)

Internet exhange

- Depending on operational philosphy of IXP
 - Partners can make bilateral transit agreements in IXP
 - Partners are already in same premises
 - Required separate virtual connections between transit provider and customer
 - Partners can make QoS peering
 - · Several virtual connections between peers
 - One per VPN per QoS class
 - One per MPLS LSP
 - etc

Material about peering

- Peering
 - As general
 - http://en.wikipedia.org/wiki/Peering
 - Motivations
 - http://www.equinix.com/pdf/whitepapers/PeeringWP.2.pdf
 - Tactics
 - http://www.nanog.org/papers/playbook.doc
- IXP
 - How-to
 - http://www.euro-ix.net/ixp/startingixp/