Service Level Agreement

- SLA is a formal contract that describes the service provided and the cost of the service.
- Contract has two parties:
 - Customer
 - End-user
 - Home user
 - Service Provider

ISP Hierarchy

More on this topic in the Peering lecture.

Service Level Agreement

- The function of the SLA is to clearly define the roles, rights and obligations of contract parties at the service interface.
- The contents of the contract depend on the service type and structure offered to the Customer:
 - Network service (Internet Service Provider, ISP)
 - The structure and control of the service is ISP responsibility
 - The structure and control of the service is Customers responsibility
 - Application service (Application Service Provider, ASP)
 - Web, email etc.
 - The contract should contain only those services/applications over which the ASP/ISP has direct control.
Service Level Agreement

- Contract defines
 - Service(s) offered
 - Cost of the service offered
 - Methods to control the service level
 - Procedures to follow in case of network malfunction

- The definition of a service should contain all areas of the service and quality parameters
 - Network service
 - Application and other value-added services
 - Support services

Network services — private access

- Private access
 - Private access service is based on the control of the Customer's access line (and control of the attached closed service network)
 - Connecting the Customer's sites with a closed network (Virtual Private Network)
 - Access lines can be
 - Fixed line connections
 - xDSL, DOCSIS or Ethernet technologies for home users
 - Any asymmetrical technology for enterprise users
 - Wireless connections
 - 3G, @450, satellite
 - ISPs may offer differentiated access services based on the Customer's access line
 - Capacity
 - Delay
 - Packet loss
 - Guaranteeing of these quality/performance parameters, independent of time or load level, is called Quality of Service

Network services — public access

- Public access
 - Public access service is based on Customer/transit contracts made by the ISP with other ISPs
 - If a customer uses this service he/she/it is offered
 - Global IP-addresses (no NAT, no private IP-addresses)
 - Access point from where traffic is routed onwards.
 - ISP controls the performance and service level of the access.

Network services — transit

- Transit service
 - Enable the networking of ISPs
 - Small ISPs are customers to larger ISPs
 - Large ISPs forward the traffic as their customer traffic
 - Equal size ISPs work together as partners
 - Each are other’s customers
 - Mutual contracts contain mainly restrictions regarding the forwarded traffic.

Value-added services

- All supportive services that support network traffic are referred to as value added (ed) services
 - Virtual network services (L2, L2+, L3 VPN)
 - Operating application services (email, web hosting...)
 - Security services (Firewall, IDS etc.)
 - Managing name services and their integrity
 - Controlling and managing customer’s configuration and/or equipment (Managed LAN service)

Performance and quality metrics: examples

- Examples of measured performance and quality parameters:
 - Network capacity is a bps and its usability is y % over time z.
 - The web page usability is a % measured over time b. The download capacity is c bps and the response time is less than d ms. The complete data is backed up every f days /weeks /months.
 - Customer VPN is offered a capacity of m bps with maximum end-to-end delay of n ms.
Usability

> The service availability (or usability) indicates the time that the services is available (or usable)

> Common terms and definitions with availability/usability are:

 - MTBF - Mean Time Between Failures
 - MTBI - Mean Time Between Interruptions
 - MTTR - Mean Time To Restoration

 > These terms define the availability slightly better than just plain percentage values.
 > Not a vague definition “over time t...”
 > Not just one long break in the service.

<table>
<thead>
<tr>
<th>Usability Level</th>
<th>MTBF (h)</th>
<th>MTBI (h)</th>
<th>MTTR (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>0.9</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>95%</td>
<td>0.5</td>
<td>0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>98%</td>
<td>0.09</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>99%</td>
<td>0.05</td>
<td>0.01</td>
<td>0.005</td>
</tr>
<tr>
<td>99.5%</td>
<td>0.03</td>
<td>0.005</td>
<td>0.003</td>
</tr>
<tr>
<td>99.9%</td>
<td>0.01</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>99.99%</td>
<td>0.001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>99.999%</td>
<td>0.0001</td>
<td>0.00001</td>
<td>0.00001</td>
</tr>
</tbody>
</table>

MTBF - ITU-T definition

> Item

 - “Any part, device, subsystem, functional unit, equipment or system that can be individually considered.”

> Failure

 - “The termination of the ability of an item to perform a required function.”

> Time Between Failures

 - “The time duration between two successive failures of a repaired item.”

> Mean Time Between Failures

 - “The expectation of the time between failures.”

MTBI - ITU-T definition

> Interruption

 - “Temporary inability of a service to be provided persisting for more than a given time duration, characterized by a change beyond given limits in at least one parameter essential for the service.”

> Time between interruptions

 - “The time duration between the end of one interruption and the beginning of the next.”

> Mean Time Between Interruptions

 - “The expectation of the time between interruptions.”

MTTR - ITU-T definition

> Mean Time To Restoration (Recovery, Repair)

> Time To Restoration

 - “The time interval during which an item is in a down state due to a failure.”

> MTTR

 - “The expectation of the time to restoration.”

Service Level Agreement

> The level of SLA parameters defines the cost of offering the service (for the ISP)

 - The higher the bandwidth or delay demands, the more expensive the service is

 - This applies also to availability/usability

Example:

 > 99.99% usability over one week period means a service that is unusable for less than a minute (during that same week).
 > Makes it impossible to maintain equipment without redundancy
 > Redundant equipment and access to network
 > Raises the costs for the ISP
 > 99 % usability enables the maintenance of network equipment without violating the contract (1.5 hours per week)

Service Level Agreement

> It is in the best interest of the customer to control that the contract (=SLA) is fulfilled

 - Measure the parameters mentioned in the SLA with the best applicable practice (that should also be documented in the SLA)

 - Service is measured where that service is used

 - Customer premises, workstations, access points
 - From the ISP provided measurement device located in the customer premises
 - From the transit point of the ISP towards the ISP’s value added service point
Measuring service quality

> When defining quality measure, always separate fact from fiction: measure only that what is quantitative
 - The measured value should be defined in the SLA so that it can be measured by both the SP and the Customer
 - Do not attach any qualitative or otherwise inexact values that are based on human interpretation or experience
 - The human effect is dependent of the person and his/her feelings
 - The end-user can’t be controlled by the Service Provider
 - Vague definitions lead to controversy that most probably leads to a sensation of unsatisfying (total) quality of service
 - “Collective effect of service performances which determine the degree of satisfaction of a user of the service”[ITU-T E.800]

Verifying the SLA of a network service

- Typically measured between the ISP’s transit points
- Service is usually guaranteed up to these points but not beyond

Verifying the SLA of an application service

- The ASP has measurement points within its network where usability is measured from
- Usually placed to transit points (at least)

Verifying the SLA of a VPN service

- From the ends of the VPN-tunnels or measurement points within the customer network
- Each site-to-site VPN-connection is measured independently from others

Measuring service level

> Quantitative service level
 - Describes the service performance on different protocol levels
 - Can be defined unambiguously
 - Service logic illustrated as a flow chart
 - Numerical values of performance can be attached
 - Can be measured

> Qualitative service level (based on customer experience)
 - Illustrates the service level / service response experienced by the end-user (Customer)
 - The response depends on factors that cannot be measured
 - Ambiguous definition
 - Can not be measured

SLA-measurements

> Measured performance/quality metrics include
 - Delay, one-way or two-way
 - Delay variation (jitter)
 - Packet loss
 - Reachability
 - Availability
 - Response times (e.g. Web-server first page Download time, TCP-connection time)
 - Throughput, available bandwidth
RFC 2544

- Originally defined to offer a standardized set of tests for measuring network device performance (latency, frame loss etc.)
 - Test framework can be also used to measure a network service’s SLA conformance
 - Commissioning measurement for VPNs or Ethernet services
 - RFC-2544 outlines specific tests to validate throughput, latency, frame loss, and back-to-back (burst) performance
 - Full line-rate traffic generation with small and big frames

Measurement methods

- End-to-end measurement
 - Probes are sent from point A to point B
 - E.g. UDP or ICMP packets
 - Packets are timestamped on departure and arrival
 - Packets are given sequence numbers
 - Network’s response is measured by observing the timestamps (delay, jitter) and sequence numbers (packet loss) on the packets
 - Sometimes end-to-end not possible
 - Measured path may cross several independent domains with conflicting policies, measurement tools, methods etc.
 - Session Border Controllers break the end-to-end connection of a VoIP call
 - RTCP statistics are not end-to-end but from the caller to the SBC

Loss of end-to-end connection

- SLA-measurement using an emulated VoIP call: MOS, RTT, DWD, Ploss statistics
 - SBC performs transcoding (e.g. From G.711 to G.729)
- The call initiated by Host A is terminated in the gateway and then in turn SBC performs transcoding (e.g. From G.711 to G.729)
- SLA-measurement using an emulated VoIP call: MOS, RTT, OWD, Ploss statistics

Spatial composition

- Based on the idea that measurements of the sub-paths can be combined so that the result estimates the properties of the complete path
- Can be used to get an estimate of the properties of a inter-domain path without a separate end-to-end measurement
 - Each domain measures its edge-to-edge sub-path

Measurement considerations

- Bandwidth usage of SLA-measurements
 - Active measurements cause extra traffic and thus disturb the normal traffic in the measured network
 - Intrusiveness
 - Probing traffic should only use a few percent of the measured network path’s available bandwidth
 - RFC 2544 Commissioning measurement uses up all available BW
 - Reporting measurement data to DB takes up BW as well
- Measurement accuracy
 - Typically only expensive devices reach <1ms accuracy (delay measurement)
 - Operators have accurate measurement devices in their core networks
- The service should be measured on the layer it is offered
 - E.g. a L2-service cannot be measured with TCP-throughput test...
SLA measurement tools

- Tools are based on operating system dependent measurement software or separate measurement devices
 - Measurement Agents (software)
 - Measurement Probes (hardware)
- A measurement device located on the Customer premises
 - Run the tests described in the SLA
 - Transfers the test results to the Service Provider’s centralized database
- SP’s database reports the results to the Customer according to the SLA

Example: Brix Measurement platform

- Several types of tests
 - UDP Echo (delay, reachability)
 - VoIP emulation (MOS)
 - Cisco CallManager
 - HTTP, DNS, SMTP, IMAP
 - DHCP, FTP...
- Probes
 - Brix 100 Verifier
 - Brix 1000
 - Software Agent for PCs
- Used by the biggest operators in Finland

Measurement probes

- Accedian EtherNID
 - Can be installed in-line or one-armed
 - Demarcation device
 - Layer 2 and 3 tests
 - In-service RFC 2544 test
 - Splitter functionality
 - 1 Gbps interfaces with changeable SFPs
- Brix 100M Verifier
 - One-armed installation
 - 100 Mbps interface
 - Layer 3-7 tests

SLA-reporting

- Data from Brix
- One-way delay between two measurement points
- SLA-reporting view
- Webserver performance
- Many tools have a "traffic light"-type of indicator to illustrate the state of the SLA

Summary

- SLA is a contract, not a set of rules
 - It should not be seen as a threat
- The function of SLA is to create a structured view of what the Customer needs and what the SP has to offer and the relation between these two
- Works as a referee in disputes
- Thus, it must be clearly measurable and observable by both the Customer and the SP
- SLA measurement methods must be agreed upon so that they can be used to decide if the contract has been fulfilled or not