

Lic.(Tech.) Marko Luoma (1/16)

# S-38.3192 Verkkopalvelujen tuotanto S-38.3192 Network Service Provisioning

Lecture 1: Network design principles

© Marko Luoma 2007



Lic.(Tech.) Marko Luoma (2/16)

#### **General Course Matter**

- Schedule
  - Lectures thursdays 9-11 and 12-14
    - · Not next week
  - Exercises fridays 12-14
    - · Not this week
- Theme
  - Service provider business
    - From business goals to technical implementations
      - Focus on how big networks are designed and operated



Lic.(Tech.) Marko Luoma (3/16)

#### **General Course Matter**

- Exercise
  - Design and verification (simulation) with ITGuru simulator
    - Provider network generalization
      - Topology
      - Technology
      - Routing
- Grading
  - Both exercise and exam needs to be passed
  - Course grade weighted combination of both grades
    - 40% exercise and 60% exam

© Marko Luoma 2007



Lic.(Tech.) Marko Luoma (4/16)

# Network Design Cycle

- Business Analysis
- Demand Analysis
- Technology Selection
- Topology Design
- Dimensioning
- Construction
- · Commissioning
- Deployment
- Auditing



Lic.(Tech.) Marko Luoma (5/16)

## **Business Analysis**

- What is the network build for
- What is the revenue logic
- · How secure is the revenue
- What is the estimated capex for the network
- How much opex is bound to the network (and services)
- · How long is the depreciation time
- What will be life span for the network
- What will be the effect of investement to the ebit level
- What is the value of network investement to company value and/or strategy

© Marko Luoma 2007



Lic.(Tech.) Marko Luoma (6/16)

#### **Demand Analysis**

- · For who and for what is the network build
  - Who are served by the network
  - What are the services provided by the network
  - Where are the users located
  - How are users connected to the network
  - What are the connections to other networks
- What are the hypotheses for the usage
  - How much traffic is going to be delivered over the network
  - How many users are to be serviced
  - What is the required grade of service
  - What is the demanded resiliency





Lic.(Tech.) Marko Luoma (8/16)

# **Topology Design**

- 1. Define minimal design to connect all customers
- 2. Define the reguired connectivity level to achieve required resiliency level
- 3. Add required amount of loops to create defined connectivity level
- Physical topology
  - Transmission links
    - Resiliency build upon different physical connections
- Logical topology
  - Transport tunnels
    - Resiliency build upon different logical connections



Lic.(Tech.) Marko Luoma (9/16)

#### Dimensioning

- Calculate offered load level for each link on the network
  - Take into account different routing behaviors
    - Distribution of traffic within the network depends on
      - Location of information sources and sinks
      - Routing topology during particular time
  - Error margins for these calculations are usually very large
    - There is no sophisticated queueing analysis methods for large networks and variable demands
    - Coarse approximations
- · Select link capacity that fulfils the dimensioning goal
  - What will be acceptable overbooking ration within the network
    - Indirect influence to potential availability figure

© Marko Luoma 2007



Lic.(Tech.) Marko Luoma (10/16)

#### Addressing

- There are several naming conventions that need to be decided
  - Identitities: AD, SIP, ENUM
  - Canonical names: DNS, WINS
  - Network addressing: routing addresses, link addresses
  - Access point addresses: customer access networks
  - Customer addresses: end user addresses
  - Translations: NAT, ENUM
- Overall subnetting and naming needs to be well designed



Lic.(Tech.) Marko Luoma (11/16)

## Security

- How is the network secured from
  - Unintentional DoS attacks
  - Malicious traffic
  - False customer routing configurations
  - Unvanted traffic
  - Overload situations
- Access control lists / Firewall filters / Routing policies
- Traffic monitoring / Traffic policing / QoS control
- Syslog monitoring



© Marko Luoma 2007



Lic.(Tech.) Marko Luoma (12/16)

#### Construction

- Aquire neccessary transmission Take into account infrastructure
  - Dark / colored fibers
  - Framed transmission connections
- Measure each and every link separately
  - Joints and weldings of fibers
  - Electrical characteristics of copper cablings
  - Properties of transmission paths

- environmental issues
  - Power consumption
    - Backup energy source
  - Cooling
    - Heat dissipation (BTUs)
  - Electro/magnetical protection
    - Is network CII classified or just office network ;-)



Lic.(Tech.) Marko Luoma (13/16)

#### Construction

- Configure each device protocol per protocol and test
  - There are several causalities between protocols
    - It is good to test them separately
- · Make some form of version control
  - It is good to know what you have changed and when



© Marko Luoma 2007



Lic.(Tech.) Marko Luoma (14/16)

#### Comissioning

- Is the final testing before ramping up the real services
  - Define the operational area where network services are usable
    - Resiliency and grade of service levels are met
  - Usually reguires huge amount of iterations between
    - Protocol configurations and different service level parameters
- Pilot the network with real services
  - To see if they work the way you want





Lic.(Tech.) Marko Luoma (15/16)

# Deployment

- Ramp-up services and customers slowly to see how network operates
  - Also this phase is good to learn and teach operative personel about tricks and corners of the new network
- Worst case scenario is the overnight roll-over from old network to a new
  - Uncontrolled load increase
  - Uncontrolled routing behavior
    - New customers are added frequently



© Marko Luoma 2007



Lic.(Tech.) Marko Luoma (16/16)

## **Auditing**

- Continuous auditing guarantees that traffic estimate and network are walking hand in hand
  - New traffic estimate is fed into network design process to produce new dimensioning (and based on the new capacity values also construction and comissioning)
- Auditing is also important for the customers satisfaction
  - Delivered service is within Service Level Agreement

rion