Goals of this lecture

• After this lecture you should know
 – What network services are and what other services an ISP might offer?
 – What options the ISP has for traffic differentiation?
 – What a SLA is and what it contains?
 – How different types of services should be measured?
Network services – private access

• **Access service**
 – Private access service is based on the control of the customer’s access line (and control of the attached closed service network)
 - Fixed lines
 » xDSL or DOCSIS-technologies for home users
 » Any symmetrical technology in enterprise usage
 - Dial-in access to ISDN/PSTN
 - ISPs may offer differentiated access services based on customer’s access bit rate.
 - xDSL, PDH and ATM –based access lines make it easy to change the access bit rate

Network services – public access

• **Access service**
 – Public access service is based on customer/transit contracts made by the ISP with other ISPs
 - If a customer uses this service he/she/it is offered
 - Global IP-addresses (no NAT, no private IP-addresses)
 - Access point from where traffic is routed onwards.
 - ISP controls the performance and service level of the access.
Network services - transit

Transit service
- Enable the networking of ISPs
- Small ISPs are customers to larger ISPs
 - Large ISPs forward the traffic as their customer traffic
- Equal size ISPs work together as partners
 - Each are other’s customers
 - Mutual contracts contain mainly restrictions regarding the forwarded traffic.

Separate services

L1-leased line
- **Blackfiber**, customer has full access to the physical layer (the fiber)
 - Customer operates the fiber and everything on it
- **Colorfiber**, customer gets only the logical access
 - Physical operating based on line technology and on ISP responsibility
 - Logical operation on customer responsibility

L2-leased line
- Parts of operator capacity on layer 2
- Capacity may be changed as needed (and possible)
Separate services

• **L3-leased line**
 – Customer is offered IP tunnels between access points.
 • Service is based on
 – IP-tunneling
 » Secure (IPSec) or unsecure (PPTP, GRE)
 » Service controlled with IP management
 – L2+ tunneling (MPLS)
 » Capacity and routing separate from other network

Value add services

• All supportive services that support network traffic are referred to as **value add services**
 • Virtual network services (VPN)
 • Operating application services (email, web hosting, …)
 • Managing name services (and their integrity) (DNS)
 • Controlling and managing customer equipment (DHCP on the very basic level)
Differentiating traffic - QoS

- **Traditional concept** of QoS is based on fulfilling **commonly accepted** parameters
 - For instance PSTN call blocking should be less than 2%
 - There is no differentiation of traffic based on QoS
- **IP-networks and related business** is heavily competed
 - ISPs aim to offer network level QoS (and thus stand out from other ISPs)
 - Performance values are attached to network level services
 - These values must be able to be measured
 - Other services of the ISP are evaluated with quantitative measures
 - Quality certificates etc.

Bringing life to QoS

- ISPs have limited methods and power to offer quality differentiated services
 - More hardware, faster hardware,…
 - Traffic shaping
 - Usage based billing
 - Differentiated Services (DiffServ)
 - Multiprotocol Label Switching (MPLS)
More hardware…

- **Overdimension the network (with proper gusto)**
 - All customer traffic can be carried in any situation
 - True utilization will notably low
 - On average there is a lot of unused capacity (waiting that the “any situation” will happen).

Faster hardware…

- **Differentiation is achieved by**
 - **Actively shaping traffic at user access point**
 - Customer is offered a certain capacity and customer traffic is shaped/buffered to this capacity
 - More traffic, more delay (or more drops)
 - **Billing users according to offered traffic**
 - Customer controls traffic based on what she/he is willing to pay.
 - Slow reaction time (depending on the billing system)
Multiprotocol Label Switching

• MPLS builds virtual connections based on information from IP routing (on top of any L2 technology)
 – Connection identifiers within the L2-header or between L2 and L3 headers
 – Enables end-to-end virtual networks

Differentiated Services

• DiffServ is a method to build logically separate IP-networks into one physical IP-network
 – Logical network is identified with IP-header DSCP / ToS - field
 – Each logical network is treated individually and separate from others
 • Although, the resources used by one logical network have an effect on the other logical networks
Service Level Agreement - definition

- SLA is a contract that describes the service provided and the cost of the service.
- Contract has two parties
 - Customer
 - End-user
 - Enterprise
 - Home user
 - Or a service provider as a client to another ISP
 - Service provider

Service Level Agreement - general

- The task of the SLA is to clearly define the roles, rights and obligations of contract parties at the service interface
- The contents of the contract depend upon the service type and structure offered to the customer
 - Network service (=ISP)
 - Application service (=ASP)
- The contract should contain only those services/applications over which the ASP/ISP has direct control
Service Level Agreement - details

• Contract defines
 – Service(s) offered
 – Cost of the service offered
 – Methods to control the service level
 – Procedures to follow in case of network malfunction

• The definition of service should contain all areas of the service and related performance and quality parameters
 • Network services
 • Application and other value-add services
 • Support services

Service Level Agreement - Examples

• Examples of measured performance and quality parameters:
 – Network capacity is x bps and its usability is $y\%$ over time z.
 – The webpage usability is $a\%$ measured over time b. The download capacity is c bps and the response time is less than d ms. The complete data is backed up every f days/weeks/months.
 – Customer VPN is offered a capacity of m bps with maximum end-to-end delay of n ms
Service Level Agreement - usability

- Service availability (or usability) indicates the time that the service is available (or usable).

- Common terms and definitions with availability/usability are
 - **MTBF - Mean Time Between Failures**
 - **MTBI - Mean Time Between Interruptions**
 - **MTTR - Mean Time To Recover**
 - **These define the availability slightly better than just plain percentage values.**
 - Not a vague definition “over time t…”
 - Not just one long break in the service

<table>
<thead>
<tr>
<th>Availability</th>
<th>MTBF (pv)</th>
<th>MTBI (pv)</th>
<th>MTTR (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>36,5</td>
<td>7,3</td>
<td>2,64</td>
</tr>
<tr>
<td>98%</td>
<td>18,25</td>
<td>3,65</td>
<td>1,68</td>
</tr>
<tr>
<td>99%</td>
<td>7,3</td>
<td>3,65</td>
<td>1,68</td>
</tr>
<tr>
<td>99,5%</td>
<td>3,65</td>
<td>3,65</td>
<td>1,68</td>
</tr>
<tr>
<td>99,9%</td>
<td>8,76</td>
<td>10,11</td>
<td>50,54</td>
</tr>
<tr>
<td>99,95%</td>
<td>4,38</td>
<td>10,11</td>
<td>50,54</td>
</tr>
<tr>
<td>99,99%</td>
<td>52,56</td>
<td>20,22</td>
<td>1,68</td>
</tr>
<tr>
<td>99,999%</td>
<td>5,26</td>
<td>5,05</td>
<td>1,01</td>
</tr>
</tbody>
</table>

Service Level Agreement – costs of ISP

- The level of SLA parameters defines the cost of offering the service (for the ISP)
 - Key objective: Aim for high utilization!
 - Exact knowledge of traffic profile and behavior
 - Or accept the fluctuation of the service level (because of statistical multiplexing)
 - Low level of utilization increases the unit cost (significantly)

- **Example:** 99.99% usability over one week period means a service that is unusable for less than a minute (within that same week)
 - This does not make it possible even to maintain the equipment without redundancy
 - Redundant equipment (and access to the network)
 - 99% usability enables the maintenance without contract violation
ISP ideal

- The aim of the ISP is
 - To increase incoming cash flow
 - Higher unit price to services with higher priority
 - Utilize network infrastructure to the fullest
 - Statistical multiplexing
 - Ensure market position

What do you sell with SLAs?

- Managed services
 - Including
 - (Differentiated) network service
 - Value add services
 - Email
 - WWW
 - Security services
 - Built upon
 - The know how and equipment of the ISP
 - Covering
 - ISPs own network
 - Outside of ISPs network only a limited set of services are offered
Measuring service quality

• **When defining quality measure, remember to measure only that what is quantitative**

 – Measured value should be defined in the SLA so that they can be measured by the operator and customer alike. (Delay, BW, Packet drops)

 – Do not attach any qualitative or otherwise unexact values (no “feelings of good network service level”)

 – Vague definitions lead to controversy that most probably lead to a sensation of unsatisfying (total) quality of service.

 • “Collective effect of service performances which determine the degree of satisfaction of a user of the service” [ITU-T E.800]
Measuring service level

• Quantitative service level (measure)
 – Describes the service performance on different (protocol) levels
 – Defined unambiguously
 • Service logic illustrated as flow chart
 • Numerical values of performance attached
 – Can be measured

• Qualitative service level (based customer experience)
 – Illustrates the service level/service response experienced by the customer
 – The response depends on factors that cannot be measured
 – Ambiguous definition
 • Can not be measured

It is in the best interest of the customer to control that the contract (=SLA) is fulfilled.
 – Measure the parameters mentioned in the SLA with the best applicable practice (that could also be documented in the SLA)

• Service is measured where service is used
 – Customer premises, workstations, access points
 – From the transit point towards the ISP value add service point.
Measuring service level

- Typically measured between the transit points
 - Service guarantees reach to these points but not beyond.

Measuring VPN-service

- At the ends of VPN-tunnels or measurement points within the customer network
 - Independent measurements between all points
Application service measurements

- The ASO has measurement points within its network.
 - The usability is checked from these points
 - Placed at least to transit points

Summary on SLAs

- Network operators and their customers use service level agreements (SLA) to come to an understanding on the offered network service level and means to verify it.
 - Actual form and content of an SLA always depends up on the negotiations between provider and customer.
- In an ideal situation SLA verification process should include both active and passive measurements.
 - Passive measurements consist of network equipment monitoring, service monitoring and traffic monitoring to determine throughput, capacity usage and delays.
 - Active measurements interfere with the existing workload by inserting measurement probes to monitor for delays, losses, response times etc.