Mobility management in IP networks & Mobile IP

Lecture slides for S-38.3192
22.2.2007
Mika Ilvesmäki

Learning goals in Mobility Management & Mobile IP

- After this lecture you will know
 - Reasons why mobility and its management are not straightforward tasks in the Internet
 - What are the mobility problems, mobility design guidelines and mobility management tasks
 - How Mobile IP works and what enhancements have been proposed (and what additional functionality they introduce)
 - How different traffic types are forwarded in Mobile IP –environment

- After reading the article “An Evaluation of Current QoS solutions for Mobile IP networks” by Agarwal et al. you will be able to
 - List and briefly explain the challenges that QoS solutions face in the Mobile IP environment
 - List and briefly explain the shortcomings of using standard RSVP-protocol in Mobile IP environment
 - List and briefly explain the advantages and disadvantages of using advance resource reservation –solutions in Mobile IP –environment
General notes on mobility

- Mobility in communications consists of various technologies and aspects
 - Wireless transmission
 - Using the frequency space
 - Multiplexing, modulation, spread spectrum, cellular systems
 - Medium access control
 - SDMA, FDMA, TDMA, CDMA
 - Communication systems
 - GSM, DECT, TETRA, UMTS, Satellite systems, Broadcast systems
- Mobility may occur on 1) Access-level (OSI 2), 2) Network-level (OSI 3) 3) Transport-level (OSI 4)

What is mobility?

- A node moving from a location to another L2 location while preserving its original (IP) address
 - Horizontal handover in the IP level regardless that we (most probably) need vertical handover in layer 2.
 - Different layer 2 networks are (usually) separated by routers (or gateways)
 - The problem: IP address identifies 1) (to a large degree) the host identity and 2) the host location.
- On the border of different layer 2 networks the change of IP address has to be notified
 - For instance when moving from WLAN to GPRS
 - This would be YAP (Yet Another Protocol)
 - and most probably it would also break up TCP connection state
Types of mobility

- Global mobility
 - (interdomain) movement across different domains
- Macro mobility
 - (intradomain) movement across different subnets within domain
- Micro mobility
 - (intrasubnet) movement within subnet

Mobility challenges

1. Locating the mobile host or service
 - address discovery (location)
2. Preserving connectivity
 - although location may change (tracking)
3. Controlled disconnectivity
 - file systems can do this
4. Controlled stand-by
5. Quick resume of communications
 - without unnecessary data lost
What moves? Services or users

• Service mobility
 – User moves and connects to his home network with arbitrary devices
 • VPNs, secure connections, WWW-mail services, etc.

• User mobility
 – User and the device moves and connects to his home network
 • Use of all home network services
 • Appearing to be in the home network

Why mobility in IP?

• Need to change physical media without breaking (TCP) connections
• People want Wireless Network Access
 – Ease and economy of operation
• Continuous connectivity
• Home network addressable from the entire Internet
Host routes – the easy solution?!

• Spread knowledge on the movements to all Internet routers
 – Assign a new address to the mobile node as it moves
 – This solution does not scale, overload of networks with location information exchange

• We need to restrict the circulation of location and IP address information to a minimum!
 – Location independent identifier

Mobility design guidelines

• No modifications to (other) host operating systems
• Internet-wide mobility calls for a scalable solution
 – and preferably infrastructure independency
• Application transparency, seamless transitions
• No modifications to Internet routing
 – mobility solution needs to have location/mobility mgmt, host routes are not an option in the Internet
• Compatibility with Internet Addressing
• No additional vulnerabilities should be introduced
• Independence of layers (do not assume that L3 and L2 addresses are related).
• Handle disconnections properly
• Support mobility at the edge devices
 – Do not assume proxies exist
Mobility management

• Location management
 – registration and location updates
 – to enable a network to discover the current location of a mobile node (MN)
 – Location-independent identifier (IP address, hostname, some other host id)
• Handoff management
 – to enable a network to maintain a connection while MN moves its location in the network

Mobile IP standards

• Mobile IP is an IETF effort
 – dealt with in several workgroups
• Mobile IP is defined in IETF standards
 – See also, RFC 1701 (GRE) and RFC 1321.
• Standards define
 – Agent discovery
 – Registration procedure
 – Tunneling
• Mobile IP is not widely used because of DHCP and VPNs provide email and web-access and NAT and firewalls block the Mobile IP functionality
Movement detection

- MN detects Home/Foreign Agent-advertisements (modified RFC 1256)
 - or solicits for a H/FA presence (unmodified RFC 1256)
 - H/FA advertisement = extended ICMP
 - Sequence numbers used to detect need for re-registration
- If no advertisements/solicitations answered
 - send ICMP to home router (check TTL!)
 - assume foreign network and try to obtain an address using DHCP or configure IP address manually
 - then register with Home Agent

Mobile IP components

- Mobile and correspondent nodes
- Foreign Agents (IPv4 only)
- Home Agents
- Tunnels
- Care-of- addresses
Tunneling

- Tunnel is a path followed by packet that is encapsulated within another packet’s payload
 - Put (IP) packets inside IP packets
 - avoid standard unicast routing
 - use other protocols in the Internet
 - Tunnels are defined manually
 - Tunnels reduce the MTU
 - Tunnel faults are hard to detect
- Tunneling techniques are several
 - IPinIP (RFC 2003, default), MinIP (RFC 2004), GRE (RFC 1701 & 1702) etc.

Home agent

- Router for the home network
- Mobility service providing agent
 - access to the home address of the mobile node without mobile node’s presence.
- Advertise routing info on demand
 - to home network, and to other nodes
- Tunnels packets to mobile node (or foreign agent)
Mobile IP basic features

- Only the Home Agent knows where you are
 - This solution scales better
- With tunneling one is able
 - to forward packets from HomeAgent to MobileNode
 - And back, if necessary
 - to appear to be in one’s home network
- Security is required but not restricted
 - The four building blocks
 - Confidentiality, Authentication, Integrity, Non-repudiation

Mobile IP transforms the mobility problem into a routing problem!

Triangle routing and reverse tunneling

- CN sends to MN and traffic flows via HA (1., 2. and 3.)
- MN to CN
 - traffic may take the shortest path (4.)
 - If ingress filtering is in effect the traffic may be dropped
 - Solution: Reverse tunneling (5.)
 - Result: triangle routing with CN, HA and MN
New route advertisements

- Home agent knows the true location of the MN
 - HA sends redirects to correspondent nodes (avoid triangle routes)
 - HA sends newFAinfo to oldFA and make oldFA redirect packets

Traffic forwarding – home network

- Home Agent intercepts packets sent to the Mobile Node and sends the packets tunneled to the MN
- How about home network ARP requests?
 - What about cached ARP-replies?
 - Registration request & reply
Traffic forwarding – Internet

- Home Agent intercepts packets sent to the Mobile Node and sends the packets tunneled to the MN
- ARP requests outside of the home network are answered with HA L2 address
 - proxyARP aka Gratuitous ARP

Multicast

- Multicasts are sent to the
 - Multicast router
 - No encapsulation/tunneling needed
 - HA that should have multicast routing capability
 - encapsulated and tunneled to the HA
 - Multicast is received
 - normally as a group member (co-located address)
 - via HA as encapsulated/tunnelled packets
 - may require recursive encapsulation
Mobile IPv6

- MN creates its own CoA with automatic address configuration
 - Stateful: DHCPv6
 - Stateless: Local subnet prefix as in Neighbor Discovery (RFC 2461, IPv6 ARP) + own hardware address
- MN may notify its correspondents when it moves (no more triangular routing)
- Correspondents put CoA in routing headers
- HA encapsulates packets if it gets them
- Binding updates carried in Destination Option

IPv4 vs. IPv6 and mobility

IPv4
1. MN, HA
2. MN home address
3. Foreign Agent
4. FA CoA/CoCoA
5. Address from
 1. Agent discovery
 2. DHCP
 3. Manually
6. Agent discovery
7. Tunneling
8. Routes optimized by a separate protocol

IPv6
1. MN, HA
2. Global home address and link-local address
3. Plain IPv6 router
4. All colocated CoAs
5. Address from
 1. Auto-configuration
 2. DHCPv6
 3. Manually
6. Router discovery (ICMPv6)
7. Source routing (option) or tunneling
8. Integrated route optimization
Mobility protocols in the Internet

<table>
<thead>
<tr>
<th>Mobility</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global mobility</td>
<td>Mobile IP (MIP)</td>
</tr>
<tr>
<td></td>
<td>TR45.6 (WIPNA)</td>
</tr>
<tr>
<td></td>
<td>Mobile IPv6</td>
</tr>
<tr>
<td>Global/macro mobility</td>
<td>HMIP</td>
</tr>
<tr>
<td></td>
<td>HMIPv6</td>
</tr>
<tr>
<td></td>
<td>TeleMIP</td>
</tr>
<tr>
<td></td>
<td>DMA</td>
</tr>
<tr>
<td>Macro</td>
<td>HAWAII</td>
</tr>
<tr>
<td>Micro</td>
<td>TIMIP</td>
</tr>
<tr>
<td></td>
<td>CIP</td>
</tr>
</tbody>
</table>

Global/macro mobility

- Mobile IP, Mobile IPv6
 - more details earlier
- Hierarchical MIP, HMIPv6
 - introduces hierarchy in FAs, establishes a tunnel from the MN to a gateway FA. Packet to MN travel thru this tunnel
 - MAP (mobility anchor point) acts as a local HA for a certain domain
 - MAP receives packets for the MN and forwards them to the link CoA
 - As long as MN is within the MAP influence the global CoA stays the same
- HAWAII (Handoff-Aware Wireless Access Internet Infrastructure)
 - Mixes the concepts of co-located CoA and FA CoA, no private address support
 - Local handovers by sending registration to base stations (FA)
Macro/Micromobility

• Cellular IP, CIP
 – Local handovers without renewed registration with CIP gateway
 • Requires changes into Mobile IP protocols
 • Not transparent to existing systems
 • Easy to manage, self-configuring
 • Packets forwarded via multiple paths, routing tables changed by mobile nodes -> not secure

• TIMIP (Terminal Independent Mobile IP)
 – Combination of CIP, HAWAII and MIP

IP & Mobility summary

• True mobility is not built-in in the Internet
 – Mobile IP handles the task somehow, and other protocols support.

• Implicit solution: Applications have developed to a direction where true mobility is not needed.

• Waiting for the killer app…