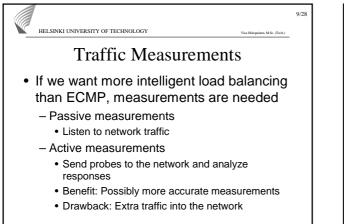
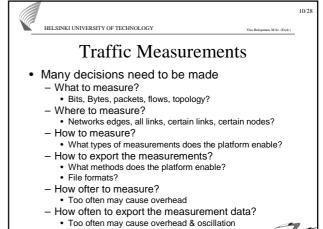
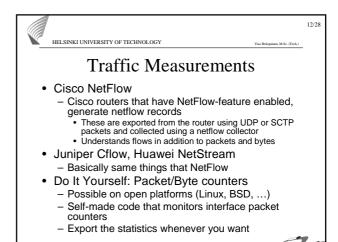
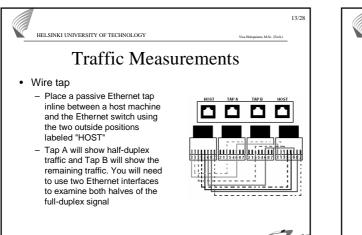
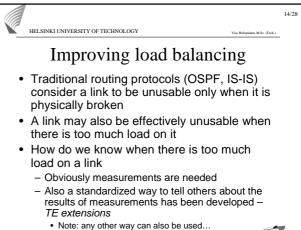

	3/28
HELSINKI UNIVERSITY OF TECHNOLOGY Visa Hologniner, M.Sc. (Tech)	
Concept of Traffic Engineering (TE)	
 Traffic Engineering (TE) (Traffic Management) is a field of communications engineering that tries to make network operations more effective and reliable while at the same time optimizing resource utilization 	
 "Application of technology and scientific principles to the measurement, characterization, modeling, and control of Internet traffic")
 Traffic engineering ~ Traffic measurements + Traffic classification + Bandwidth management + Traffic Shaping + Protocol tuning 	
 RFC 3272: Overview and Principles of Internet 	


 RFC 3272: Overview and Principles of Internet Traffic Engineering

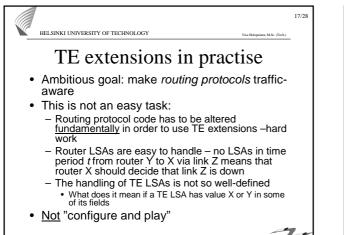

HELSINKI UNIVERSITY OF TECHNOLOGY Visi Belginies, M.Sc. (fr.h.)	4/28
Some problems that TE tries to solve	
 Effective bandwidth utilization on the path that packets are <i>currently using</i> 	
 Effective bandwidth utilization within an Autonomous System 	
 Optimal policy usage between Autonomous Systems (BGP TE) 	
 Fast connectivity restoration after a component breakdown (IGP Fast Convergence, MPLS Fast Re-Route, etc.) 	
Result: Happier users = more money	

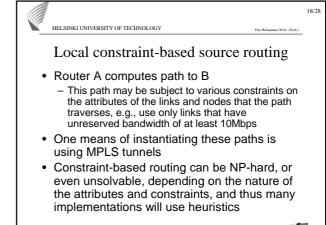




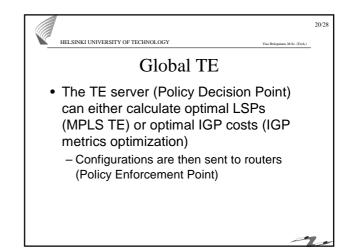


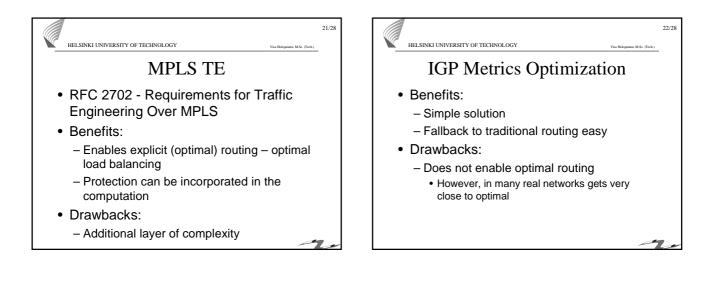
	11/28
HELSINKI UNIVERSITY OF TECHNOLOGY Visa Holopainen, M.Sc. (Tech.)	_
Traffic Measurements	
 Internet Protocol Flow Information eXport (IPFIX) IETF working group 	
 Created from the need for a common, universal standard of exporting IP flow information from routers 	
 RFC 3917: Requirements for IP Flow Information Export 	
SNMP	
 Query the devices (Request-Response) about their load, or configure the devices to send the data on triggers (SNMP traps) 	
 Nice principle, however sometimes just doesn't work (buggy implementations) 	

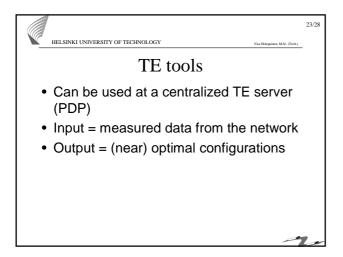


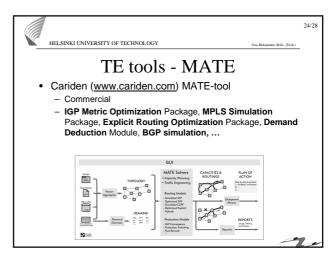


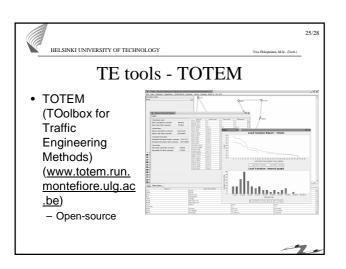
	15/28
HELSINKI UNIVERSITY OF TECHNOLOGY Visa Holopainer, M.Sc. ((ech.)
TE extensions	
Similar in OSPF (RFC 3630) and IS-IS (only drafts available – work in progress)	
 The information made available by TE extensions ca be used to build an extended link state database just as router LSAs are used to build a "regular" link state database 	st
 The difference is that the extended link state databa (Traffic Engineering Database, TED) has additional attributes (e.g. free BW) 	
 Uses of the TED include: 	
 Monitoring the extended link attributes 	
 Local constraint-based source routing 	


Global traffic engineering


<page-header>(V) RELEVANCY OF TECHNOLOGY TO LARAWENTE (TAXA) Traffic Engineering LSAS (Opaque LSAS) The LSA payload consists of one or more nested Type/Length/Value (TLV) triplets for extensibility






	19/28
HELSINKI UNIVERSITY OF TECHNOLOGY Visa Holopainen, M.Sc. (Tech.)	
Global TE	
 A device (TE server) can build its own traffic engineering database (TE extensions not needed), input a traffic matrix and an optimization function, crunch on the information, and thus compute optimal or near-optimal routing for the entire network The device can subsequently monitor the traffic engineering topology and react to changes by recomputing the optimal routes 	

