Resiliency

S-38.3192 Verkkopalvelujen tuotanto
S-38.3192 Network Service Provisioning

Resiliency/ Survivability

- Network Resiliency:
 - "Ability of the network to provide and maintain an acceptable level of service in the face of various faults and challenges to normal operation."
- Network Survivability:
 - "Quantified ability of a system, subsystem, equipment, process, or procedure to continue to function during and after a natural or man-made disturbance."

Internet Design Goals

- Primary goal:
 - Develop an effective technique for multiplexed utilization of existing interconnected networks
- Second level goals, in the order of importance (from Dave Clark, 1988)
 1. Internet communication must continue despite loss of gateways
 2. ...
 ➢ The concept of network resiliency has been present in the Internet from ground-up
Network Survivability

- Survivable network regains service level (SLA: availability) quickly in the presence of faults within the network.
- Requires mechanisms for protection and/or restoration.
 - Strength of applied mechanisms depends on the network operator’s strategic goals (how important it is to regain service level quickly):
 - 2 nines -> restoration
 - 5 nines -> protection (1:1)
 - 7 nines -> protection (1+1)

Network Survivability illustrated

Protection vs Restoration

- Protection
 - Backup resource(s) are determined for primary resource(s) before a fault occurs
- Restoration
 - The (automatic) process of restoring connectivity after a fault
 - Usually slower if no protection is used

Protection Modes

- **1+1 protection**
 - A separate secondary resource is dedicated for each primary resource
 - Traffic is sent on both resources and receiving end of resource selects one copy to be transmitted further
 - Can’t carry extra traffic over secondary resource
- **1:1 protection**
 - A separate secondary resource is dedicated for each primary resource
 - If the primary resource fails, traffic switches to the secondary resource. When the failure on the primary resource is resolved, traffic automatically reverts to the primary resource
 - Extra traffic can be carried over the secondary resource but in case of fault in primary, extra traffic is pre-empted from the secondary
Protection Modes

• **1:N protection**
 - A secondary resource is set for a group of primary resources
 - The underlying assumption is that only one of the primary resources will fail at any given time, and that the working resources are independent of each other
 - Requires less hardware than 1+1 and 1:1 schemes (however, the hardware may be more expensive – slide 9)
 - The disadvantage is that the switching between primary resources and the backup resources must occur at a higher level in the system (slower)
 - Extra traffic can be carried over the secondary resource but in case of fault in primary(ies), traffic is pre-empted from the secondary
 - Only a subset of extra traffic in primary(ies) delivered on secondary
 - Priorization of primaries

• **M:N protection (M<<N)**
 - M secondary resources are set for a group of primary resources (N)
 - Higher percentage of primary traffic is secured than with 1:N protection

Protection Modes - example

<table>
<thead>
<tr>
<th>Protection Scheme</th>
<th>Cost/complexity of OXC, operation & Management systems</th>
<th>Restoration speed</th>
<th>Wavelength resources required</th>
<th>Extra traffic that can be carried by secondary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+1</td>
<td>Lowest</td>
<td>Highest</td>
<td>Highest</td>
<td>None</td>
</tr>
<tr>
<td>1:1</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Highest</td>
</tr>
<tr>
<td>1:N, M:N</td>
<td>Highest</td>
<td>Lowest</td>
<td>Lowest</td>
<td>Medium</td>
</tr>
</tbody>
</table>

Restoration

• **Local restoration**
 - Network device that detects the error uses local capabilities to circumvent the failed part of the network
 - In case of link; possible secondary link to same destination
 - In case of node; 3rd node to circumvent failed node
 - Leads to sub-optimal network state

• **Path restoration**
 - Source of the path determines new path in case of failure in primary path
 - Pre-calculation of disjoint paths is possible
 - Faster switch over time
Restoration

• **Global restoration**
 – Network node that detects fault in the network informs all other nodes in the network about existence of fault (by using the routing protocol)
 • Link state routing: by removing the LSA
 – Only if happens to be originator of LSA
 – Otherwise sits back and waits for timer to clean the LSDB (can be hours with basic configurations)
 • Distance vector routing: by calculating new distance vector

SDH

• SDH networks are famous for their fast restoration in case of fault
 – Typically less than 50ms to complete restoration
 – Based on general idea of **non-arbitrary network topologies**
 • Double rings which can be restored by reversing the traffic at the ends of faulty section
 – Single action
 – Single failure restoration within the ring
 – 50% of network capacity reserved for restoration (1:1 protection)

Ethernet

• Conventional Ethernet restoration is based on **spanning tree protocol**
 – Any arbitrary topology is turned into tree topology
 – All switches in an extended LAN gather information on other switches in the network through an exchange of data messages
 – This exchange of messages results in the following:
 • The election of a unique root switch for the stable spanning-tree network topology
 • The election of a designated switch for every switched LAN segment
 • The removal of loops in the switched network by placing redundant switch ports in a backup state
Ethernet - Spanning Tree protocol

- Loop forming interfaces are removed from the spanning tree by the switches participating in the protocol.
- The tree is formed by utilizing port priorities (costs).

Ethernet - Spanning Tree protocol

- Several version available
 - 802.1d (original spanning tree) with long convergence time (50s)
 - 802.1w (Rapid Spanning Tree) with only few seconds of convergence
 - 802.1s (Multiple Instance Spanning Tree) per VLAN operation
- All versions based on same protocol operation
 - Exchange of BPDU messages to determine whether or not interface should be blocked
- Switches usually support immediate forwarding on leaf ports
 - No additional delay in starting of communication

Ethernet - Resilient Fast Ethernet Ring

- SDH/SONET rings provide very fast restoration, but synchronous equipment is more expensive than Ethernet-based, and incurs a heavy bandwidth penalty (50%) to achieve the fast restoration.
- Solution: SDH type network restoration on top of Ethernet
 - Basic idea same as in SDH:
 - Ring type network topology
 - Traffic reversion in case of error
 - Implementation 1: Ethernet Automated Protection Switching (EAPS), RFC 3619
 - Implementation 2: Metro Ring Protocol (MRP)

Ethernet - Resilient Fast Ethernet Ring

- Each ring has a master which:
 - Blocks loop forming interface
 - In case of fault opens the loop forming interface for traffic
- Detection of fault can be based on:
 - Probes sent by the master
 - Signaling from the device that detects the fault
- Convergence time of network is dependent on time between fault and notification of master
 - Tens of milliseconds with device signalling
 - Hundreds of milliseconds with probes
Ethernet - Resilient Fast Ethernet Ring

MPLS
- LSP restoration processes are based on Constrained Shortest Path First routing algorithm for selecting bypass LSPs.
- Re-route options:
 - Link protection
 - Link and node protection
 - Path protection
 - Dynamic restoration

Link Protection
- Each link on protected LSP has its own bypass for circumventing failed link
- Link protection alternatives:
 - per LSP
 - Several LSPs can be aggregated into single bypass LSP
- Requirements:
 - Separate bypass is calculated between each RSVP neighbor
 - Router tracks the interface status of egress link and reroutes the protected traffic by (two competing drafts)
 - Stacking the original label with label structure of bypass LSP
 - Changing the label for bypass label

Link/Node Protection
- Node protection is used to circumvent broken nodes (instead of links).
- Bypass LSP is established around set of next link, node and link using separate router.
- Otherwise node protection operates like link protection
Path protection

- Path protection is done per ingress/egress pair and to each individual LSP.
- Separate backup LSP is calculated through the network using disjoint resources (routers & links).

In failure of primary LSP, ingress point of LSP swaps into backup

- Question: How can ingress become aware of failure in primary
 - Upstream notification takes time to travel
 - Additional delay in restoration of network status

One-to-one vs Facility backup

- One-to-one backup operates on the basis of a backup LSP for each protected LSP.
- Facility backup aims at using a single LSP to back up a set of protected LSPs (figure below).

Switch Back

- Switch back is the process of rerouting the failed LSPs from their backups to the primary LSPs
 - For Path protected LSPs this may not be wise
 - Shifting the traffic causes always deterioration
 - Even with make-before-brake packets usually experience sequence errors
 - Facility backups require some form of switch back
 - Into original paths once they are up and running
 - Into new primaries if restoration of original primary is not expected to happen
Dynamic Restoration

- If there are no other protections new LSP can also be calculated on demand
- Failure of primary triggers on-demand calculation of a new primary
- Failure is noticed from the fact that failed resources are no longer in Traffic Engineering Database (TED)
- Causes few hundred milliseconds of additional delay for restoration

IP

- IP restoration is based on convergence of routing protocols
 - Fault is detected by using
 - Hello timers
 - (L2 indications)
 - (Bi-directional Forwarding Detection (BFD) indication)
 - Flooding of new LSAs
 - Calculation of global routing tables
 - Instantiation of new forwarding table

IP

- Detection of errors
 - Slow process if there is a L2 interconnection device between routers (link is not broken) - standard Hello based detection takes tens of seconds
 - L2 indication process works only if interconnection device fails
 - Can be sped up by using BFD
 - Probes are sent between forwarding planes of routers
 - Fault is signaled to routing process

- Convergence of IP routing depends heavily on detection time of fault
 - Hello process -> tens of seconds
 - BFD -> some hundreds of milliseconds
 - L2 indication -> few milliseconds
 - Flooding process and SPF calculations take only some tens or hundreds of milliseconds
 - Off-the-shelf running networks can have large deadlocks due to default timer values:
 - Hello timer of 10s -> router dead 40s
 - LS refresh time 1800s -> LSA max age 3600s
Inter-layer Communication

- Modern telecommunications networks are layered with their structure
- Fault in lower layer affects all higher layers
- Convergence process should proceed from bottom to up
 - Unnecessary oscillation can be avoided if each layer is allowed to convergence before next layer attempts to restore the situation
 - Fast restoration in lower layer may be ignored in higher layers all together if communication partner with higher layer entity stays the same

Summary

- Survivable network regains service level quickly in the presence of faults within the network
 - Requires mechanisms for protection and/or restoration
 - Protection = Backup resource(s) are determined for primary resource(s) before a fault occurs
 - Restoration = The (automatic) process of restoring connectivity after a fault; usually faster if protection is used
 - L 1: SDH – very fast restoration
 - L 2: Ethernet (spanning tree, resilient ring)
 - L 2,5: MPLS - LSP protection
 - L 3: IP - Fault detection bottleneck; overcome with L2 indication or BFD