Virtual Private Network

- **VPN is**
 - A private network constructed over a shared public infrastructure
 - Fiber, TDM, ATM, FrameRelay, MPLS, IP
 - One of several network realizations on the same infrastructure
 - Each have their own routing policy

VPN

- **Virtual**
 - Network resources used are part of a common shared resource
- **Private**
 - Separate addressing and routing – topological isolation
 - Flow of routing data is constrained to constrain the flow of user data
- **Network**
 - Devices that communicate through some arbitrary method
- **GOAL: Restricted connectivity**
 - Internet: Any to Any
 - VPN: Point to Point or Set to Set

Development Cycle

- **L1**
 - Leased Lines
 - SDH based leased lines operated with routers
- **L2**
 - Shared Leased Lines
 - MPLS leased lines operated with routers or switches
- **L3**
 - Shared Leased Lines
 - ATM leased lines operated with routers or switches
Terminology

- **Router Types**
 - **CE:** Customer Edge Router
 - Customer routing
 - Devices are not aware of provider network
 - **PE:** Provider Edge Router
 - Provider customer interface
 - Terminates routing from both sides
 - **P:** Provider Router
 - Provider core routers which should not be aware of customers

Site

- Is a collection of networking devices that communicate together without traveling through provider network.
- Is mapped to PE router interface(s)
- Separate routing table is associated for sites sharing common routing policy in PE router

VPN Routing and Fording Table

- **VPN Routing and Fording Table**
 - VRF stores site specific routes learned from:
 - **CE** with any means
 - **PE** with MP-IBGP

VPN Types

- **Customer based**
 - Routing and control at the CE routers
 - L2TP, PPTP, IPSec, GRE
- **Provider based**
 - Routing and control at the PE routers
 - MPLS, VPLS, GRE, IPSec

Customer Based VPNs

- PPTP/L2TP are typical ways to build L2 VPNs from dial-up connections to company resources
- Operate on top of TCP (PPTP) or UDP (L2TP)
Customer Based VPNs

- IPSec is used to create L3 VPNs between location whether end host or CPE device
 - Native support for strong encryption (company confidentiality)

Provider Based VPNs

- **L2 p-2-p approach**
 - Provider delivers L2 access between PE routers of customer sites
 - FR: DLCI per site
 - ATM: VC per site
 - Ethernet VLAN per site
 - Draft-martini, Draft-kompella
 - BGP is used to distribute labels (draft-kompella)
 - LDP is used to distribute labels (draft-martini)

- **L1 p-2-p approach**
 - Provider delivers L1 access between PE routers of customer sites
 - Connection is provided by using
 - TDM switching
 - Lambda carrier
 - Photonic switching
 - Control connection between PE and CE is based on IP
 - (G)MPLS

- **L3 approach**
 - RFC 2547bis
 - Provider delivers L3 access between PE routers of customer sites
 - Customer locations are routed together using BGP as means to deliver labels and addressing information through the core

RFC 2547bis

- Routed interconnection of VPN sites
- Multiprotocol BGP extensions are used to transfer routes through the core network
- Customers are separated to individual routing and forwarding tables
- Scalability is achieved by minimizing configuration
 - CE only knows interfacing PE
 - PE needs to know interfacing CE
 - Also every PE containing VRF of particular customer
 - Easier to make full-mesh between PEs
 - P knows nothing about VPNs

- **L2 approach**
 - VPLS
 - Provider delivers L2 Ethernet network between PE routers of customer sites
 - p-2-p
 - mp-2-mp
 - BGP or LDP is used to distribute labels between PE routers
VPN-IPv4 NLRI

- **MP-BGP**
 - Multiprotocol extensions for BGP-4
 - RFC 2283

- **NLRI**: AFI:1 SAFI:128
 - Mask
 - MPLS label
 - Route distinguisher
 - Disambiguates IPv4 addresses -> Controlled duplicates of addresses
 - Subscriber IPv4 prefix

<table>
<thead>
<tr>
<th>Mask</th>
<th>Label</th>
<th>Type</th>
<th>Adm</th>
<th>AN</th>
<th>IP Address</th>
</tr>
</thead>
</table>

VPN-IPv4 Addresses

- These extended addresses appear only in control plane of PE routers
 - Route distinguisher points into a VRF where particular address should be stored for packet delivery
 - Same address can safely co-exist in two different VRFs due to full isolation between them
 - (Logical) interfaces are bound into VRFs

VPN-IPv4 route distinguisher

- **Type**
 - 0:
 - Adm=AS number
 - AN=4 bytes (PE RID)
 - 1:
 - Adm=4 bytes (PE RID)
 - AN=Unique Number

<table>
<thead>
<tr>
<th>Type</th>
<th>Adm</th>
<th>AN</th>
<th>IP Address</th>
</tr>
</thead>
</table>

- **Administrator**
 - Identifies the assigned number authority
 - AS -> PE RID
 - PE RID -> Unique Number
 - **Assigned Number**

Distribution of routes

- Distribution of customer routes through provider network is based on BGP
 - IBGP between PE routers of different customer sites
 - Full mesh of PE routers
 - All VPN routes are sent to every other PE
 - Scalability concerns
 - IBGP peering
 - Storing of routes and labels

![Distribution of routes diagram]
Distribution of routes

- Route target is a BGP extended community attribute which can be used to filter routes coming from IBGP sessions
 - Identifies a set of VRFs to which a PE router wishes to distribute routes
 - Same format options as in route distinguisher
 - ASN:IPv4 Address
 - IPv4 Address:Unique Number

- Route reflectors can be used to alleviate peering constraints in IBGP sessions
 - PE routers send their VPN routes to RR which stores them into VPN table
 - PE's receive all routes of other PE's
 - PE's can ask routes with certain target
 - Route target filtering (RTF)

- Route reflector need not to be PE router as it does not have VRF tables
 - Routes from individual VRFs are stored in a single BGP routing table
 - BGP refresh capability is used to retrieve routes on non-disruptive manner from the RR
 - An LSP is required from RR to every PE
 - BGP next-hop needs to be resolvable from the RR in order to make route usable

Route Target Filtering

- Route target filtering uses an separate NLRI format
 - AFI:1 SAFI:132
 - Prefix limit
 - Maximum number of RT advertisements that can be received
MPLS LSP

- LSP between PE-1 and PE-2 is set up for tunneling VPN packets through the provider core

Routing table:
- Destination: 1.1.1.1, FEC 1 → Interface 2, Label 11000

PE-PE

- MP-IBGP session between PE routers is established
 - LSP between PE routers is required to resolve BGP next-hop

CE-PE Communication

- BGP is native choice between two different administrative domains
- IGP (RIP, OSPF, IS-IS) could also be used
 - Separate routing process needs to be run for each customer
 - Separation of customer and provider routing

Exchange of routing information

- CE-1 sends a BGP update to PE-1

BGP update
- SRC: 20.0.0.14
- DST: 20.0.0.13
- PATH: AS65001
- NEXT-HOP: 20.0.0.14
- NLRI: 10.10.1/24
Exchange of routing information

- PE-1 checks that it has BGP-next hop in IGP and install routes in correct VRF

VPN-B / Site 1
AS 65002
10.10.1/24

VPN-A / Site 2
AS 65001
10.10.3/24

VPN-B / Site 2
AS 65002
10.10.2/24

VPN-A / Site 1
AS 65001
10.10.1/24

PE-1
1.1.1.1

PE-2
1.1.1.2

CE-1

CE-2

CE-3

CE-4

20.0.0.X/30
1

12

5

6

9

10

11

14

15

17

18

20

21

22

23

24

25

26

AS 65000
VRF: 100 (VPN-A)
DST: 1.1.1.1:1:10.10.1/24
NEXT-HOP: 1.1.1.1
LABEL: 10000
ROUTE TARGET: 65000:100

BGP update
SRC: 20.0.0.14
DST: 20.0.0.13
PATH: 65000
NEXT-HOP: 1.1.1.1
NLRI: 10.10.1/24

VRF: 100 (VPN-A)
DST: 1.1.1.1:1:10.10.1/24
NEXT-HOP: 20.0.0.14
NLRI: 10.10.1/24

MP-IBGP update
SRC: 1.1.1.1
DST: 1.1.1.1
PATH: 65001
NEXT-HOP: 1.1.1.1
LABEL: 10003
ROUTE TARGET: 65000:100

Exchange of routing information

- PE-2 checks for proper import filter (route target) and installs routes to correct VRF

VPN-B / Site 1
AS 65002
10.10.1/24

VPN-A / Site 2
AS 65001
10.10.3/24

VPN-B / Site 2
AS 65002
10.10.2/24

VPN-A / Site 1
AS 65001
10.10.1/24

PE-1
1.1.1.1

PE-2
1.1.1.2

CE-1

CE-2

CE-3

CE-4

20.0.0.X/30
1

12

5

6

9

10

11

14

15

17

18

20

21

22

23

24

25

26

AS 65000
VRF: 100 (VPN-A)
DST: 1.1.1.1:1:10.10.1/24
NEXT-HOP: 1.1.1.1
LABEL: 10000
INNER: 10000
OUTER: 11000
ROUTE TARGET: 65000:100

BGP update
SRC: 20.0.0.21
DST: 20.0.0.22
PATH: 65000,65000
NEXT-HOP: 20.0.0.21
LABEL:
INNER: 10000
OUTER: 11000
NLRI: 10.10.1/24

Exchange of routing information

- PE-2 generates an MP-BGP update for CE-3
 - Note that PATH is changed from 65001 -> 65000, 65000 due to loop detection of BGP
Exchange of routing information

- CE-3 checks from IGP validity of BGP-next hop and installs routes to RIB

Dataflow

- MPLS penultimate hop popping

L2 MPLS VPN

- PE router maps circuit IDs (VLAN ID, FrameRelay DLCI, ATM VPI/VCI) to label
- Decouple of customer facing technology from core technology
- Simplify provisioning of customer services
- Each site has own circuit from CE to PE
- Interconnection happens at CEs (routing)

- Draft-Martini
 - Communication between PE routers is based on LDP
- Draft-Kompella
 - Communication between PE routers is based on BGP

L2VPN NLRI

- Length of the NLRI
- Route Distinguisher
- Site ID (Identifies the CE)
 - Unique ID withing VPN
- Label Base
 - First label in label range
- Label Block Offset
 - If multiple label blocks are used defines the offset from the base label
- Circuit Status
 - Signals the L2 status of PE-CE link to the other end of the link
 - Simultaneous carrier loss at both ends
 - L2 detection for OSPF
 - Also carries Label range value
L2VPN VFT
- Route Target
 - Community for forming L2 VPN
- Site ID
 - Unique ID within VPN
- Label Range
 - Number of possible peer CE
- Label Base
 - First label in label range
- Sub-int ID:Label pairs
 - Sub-interfaces in PE/CE to handle connections to different sites
 - Labels are assigned by PE based on
 - Label base
 - Label range
 - Remote-site-ID
 - Auto assignment
- Sub-int ID:Label pairs
 - Sub-interfaces in PE/CE to handle connections to different sites
 - Labels are assigned by PE based on
 - Label base
 - Label range
 - Remote-site-ID
 - Auto assignment

Virtual Private LAN Service
- The idea behind VPLS is to map provider infrastructure to a virtual bridge
 - Remember the idea from Carrier Grade Ethernet -lecture
 - E-LAN service, where network looks like a distributed bridge
 - VPLS is a method for provider to offer CGE type of E-LAN service
- Two versions:
 - BGP based by Kireeti Kompella (Juniper)
 - Some scalability benefits over the other
 - LDP based by Vach Kompella (Alcatel)

Terminology
- Router Types
 - CE: Customer Edge Device
 - Router or Ethernet bridge
 - PE: Provider Edge Router
 - There can also be uPE which is L2 aggregation device in front of PE
 - Also called VE device
 - Perform MAC address learning
 - Contains VPN forwarding table (VFT)
- P: Provider Router
 - Provider core routers which should not be aware of customers
CE

- CE is in major role in VPLS
 - CE's form direct relationship as if there is no provider network in between
 - IP routing adjacency
 - Ethernet spanning tree adjacency
 - Same L2 configuration on all sites
 - VLAN ID

uPE PE

- Provider edge devices are the ones which are aware of VPLS service
 - uPE does L2 aggregation in front of PE router
 - Economics of law: interfaces at L2 device are much cheaper than on the L3 device

VFT / VCT

- VFT contains
 - Local VCT
 - Local site ID
 - Site's Layer 2 encapsulation (Ethernet, VLAN, etc)
 - Logical interfaces provisioned to the local CE
 - Label base used to associate received traffic with one of the logical interfaces
 - VCT from other PE
 - Site ID (VE ID)
 - Label

VFT

- Route Target
 - Community for forming VPLS
 - Site ID
 - Unique ID withing VPLS
 - Label Range
 - Number of possible peer CE
 - Label Base
 - First label in label range
 - Offset

- Remote site:Label pairs
 - Other possible sites and labels that are used to communicate with peers
 - Populated with MP-IBGP
VPLS NLRI

- Similar to L2VPN NLRI
- AFI (1), SAFI 65
- VE ID <-> Site ID
- VE Block Offset <-> Label offset
- VE Block Size <-> Label range
- Label Base <-> Label base

- No circuit status

L2 Extended Community

- Community type
 - L2 Information
- Encapsulation Type
 - 19: VPLS
- MTU
 - All sites must use same MTU size
 - Single LAN emulation

- Flags
 - MBZ: 6 zeros
 - C: Control word required
 - S: Sequencing required