L2 forwarding

- L2 forwarding uses ATM/MAC-addresses in its operation
 - Each device does an independent forwarding decision for each and every packet
 - Hop-by-hop operation
 - Address lookup is based on full address
 - First match in dB is unique
 - HW acceleration

L3 forwarding

- L3 forwarding uses IP addresses in its operation
 - Each router does independent decision on packet forwarding based on destination address
 - Hop-by-hop operation
 - Address lookup is based on longest match
 - Partial match to address
 - Complicated algorithms
 - Slower
 - More searches

L2+ forwarding

- L2+ forwarding uses strength of the both L2 and L3 forwarding
 - Edge of the network operates on L3 addresses
 - Predefined criterias are used to pass packets through L2 tunnels rather than normal L3 forwarding
 - Cut through-operation
 - Virtual connections between edge routers
 » Logical links for IP forwarding
L3 forwarding

• Aka message switching
• Pros
 – Efficient use of network resources
 • Each packet is treated as an independent connection
• Cons
 – Independent processing of packets
 • Slow process in L3
 • Depending on internal architecture, may pose certain limitations to the performance
 – Large databases of addresses
 – Terminals are not aware of network status

L2+ forwarding

• Aka virtual circuit switching
• Pros
 – Only a fraction of packet visits in L3 processor
 • All of the packets at the edge of L2+-network
 • At the core, part of the packets that do not belong to any L2+ tunnel
 – Smaller address dB
 • Efficient integration
• Cons
 – Restoration from the fault requires a lot of work
 • Establishment of all tunnels that travel through faulty device or link
MPLS

- Is basically networking technology based on L2+ forwarding
 - Builds
 - On top of real L2 network additional virtual connections
 - Virtual connections are for L3 protocols as real as actual L2 associations
 - Based on L2+ header
 - MPLS shim header
 - Ethertype xxx
 - Virtual connection identifier
 - ATM: VPI/VCI
 - FrameRelay: DLCI

MPLS-shim header

- Label (20bit)
 - Virtual connection identifier
- CoS (3bit)
 - FEC used for the packet
- Stacking bit (1 bit)
 - Bottom of label stack
- TTL (8 bits)
 - IP-packets TTL value which is decremented as if forwarding would have been done in L3

CoS

- Forwarding Equalency Class (FEC)
 - Defines
 - How particular packet is queued with respect to other packets
 - Class based queueing
 - Packets from different label paths share common queues
 - Roughly resembles
 - DiffServ PHB
 - IntServ service class
 - ATM traffic class

Label

- Label is a packet dependent identifier that associates the packet to certain L2+ tunnel (label switched path)
- Label has only local meaning
 - It is unique within single link
 - Labels are swapped in each hop of the network
 - Certain occasions labels may also be
 - Pushed: added additional outer label (stacking)
 - Popped: outer label is removed (stack is lowered by one)
- Labels are associated through separate protocol
 - Label distribution protocol (LDP)
 - Resource reservation protocol (RSVP)
 - Border gateway protocol (BGP)
Terminology

- **Label Switch Router (LSR)**
 - Router capable of doing both IP routing and label switching
 - **Label edge router (LER)** is a special case of a router that does not do switching only popping and pushing
- **Label Switched Path (LSP)**
 - A chain of individual label swap relations between two label edge routers
- **Penultimate router**
 - Router next to terminating LER enroute certain LSP

Building LSPs

- LSPs are constructed to upstream
 - Opposite to traffic flow
- Downstream router binds a label to certain FEC which is then transmitted to upstream
 - Upstream LSR uses this label to reach particular destination through downstream router
Label Retention

- **Conservative**
 - Labels which arrive are only kept if they come from the valid next hop in label switched path
 - Depends on routing and FEC
 - Spares the label space if network is large (contains a lot of neighboring relations)
 - Slows the adoption of new routes in error situations
 - New labels need to be spread

- **Liberal**
 - All labels coming from neighbors are kept even though there is not valid next hop in forwarding table
 - Within the limits of memory
 - Fast re-routes
 - Labels are already at the network
 - Uses a lot of memory in case of large number of peers

Label Distribution

- **Downstream-unsolicited**
 - An LSR may issue a label binding to an FEC without an explicit request from an upstream LSR
 - The label binding to FEC is sent to all label distribution peers.
 - This is the way LDP typically functions

- **Downstream-on-demand**
 - LSR sends an explicit request for a label binding to an FEC to a next-hop
 - The reaction of the downstream LSR to this request depends on the label advertising mode supported on the next hop
 - This is the way RSVP-TE typically works

Label Advertising

- **Ordered Label Distribution**
 - A label binding to FEC will not be distributed to the upstream unless LSR has corresponding label binding to FEC in table
 - In case of non-existing mapping a LSR makes a request to the downstream
 - This continues up until
 - There is a binding
 - We reach the egress and create the label

- **Independent Label Distribution**
 - A label binding to FEC is executed even though a LSR has not corresponding binding itself
 - After this it makes own label request
 - Could lead
 - Loops
 - Black-Holes

Route Selection

- **Route selection for LSP depends on the IP routing protocol**
 - All label bindings relate to FIB in the router
 - FIB can be created in form of
 - Static routes
 - Heavy process if large number of LSRs
 - Routing protocol inference
 - Mainly link-state routing protocols
 - If traffic engineering is pursued
Route Selection

- **LDP** uses IGP routing table to form label switched paths
 - Uniform view of network
 - Unable to have traffic engineering
- **RSVP-TE** uses
 - Manual paths configuration
 - IGP formed LSDB and TED to calculate label switched paths
 - Disjoint view of network
 - Multiconstrained route calculation

RSVP-TE

- PATH message contains the information of used routing
 - **Hop-by-hop**
 - IGP routing table is used to select best next hop for the PATH-message
 - **Explicit**
 - Route is injected from the ingress point in to the network
 - Manually
 - Through C-SPF calculation
 - Route is in form of Explicit Route Object (ERO)

Explicit Route Object

- ERO makes possible to inject predefined route for the LSP
 - **Traffic Engineering**
- ERO list is populated from
 - Manual selection
 - Works well in small networks
 - External route calculation server
 - Different facilities for primary path and backup
 - Endurance to large scale network problems
 - Internal C-SPF calculation of route for the LSP

ERO route

- **Strict route**
 - PATH message follows strictly the ERO list of LSR interfaces
 - If LSRs in ERO list are not peers LSP is not set up
 - If resources enroute the ERO path are not available, LSP is not set up
 - Malfunction on the LSP ceases the traffic if no backups are defined
- **Loose route**
 - PATH message follows loosely the ERO list of LSRs
 - If LSRs are not peers IGP routing is used in between
 - If resources are not available, a detour is searched with IGP routing
 - Malfunction of the LSP creates a new signaled LSP
RSVP-TE

- When PATH message reaches the egress of the network a RESV message is generated to the upstream
 - Contains label bindings in a hop-by-hop manner
 - Associates resources to the label
 - Activates the forwarding
 - Label Information Base (LIB) in HW is populated with the received downstream label and our upstream label

LDP vs RSVP-TE

- LDP relies on IGP in restoration of LSP:s
 - IGP time-out + SPF-calculation + LSP formation
- RSVP-TE does not necessarily rely on IGP
 - Protection paths can be predefined
 - Any mechanism can be used to decide the quality of LSP