

# S-38.3192 Verkkopalvelujen tuotanto S-38.3192 Network Service Provisioning

Lecture 3: IS-IS / OSPF



#### IS-IS versions

- IS-IS
  - ISO 10589
  - OSI network layer routing protocol
  - Works only with
    - CLNS / CLNP
      - OSI Network protocol for connectionless services
- Integrated IS-IS RFC 1195

  - Integration of IP addresses into OSI CLNP reference model
  - Three operation modes:
    - Pure CLNS
    - Pure IP
    - Mixed CLNS/IP
  - Operation is always based on CLNS model



## IS-IS

- Linkstate protocol like OSPF
  Dijkstra SPF
  Operates directly on top of link layer
  Parallel to IP
  Pros: Independent of IP addressing
  Corn Difficulties with ATM null encapsulation (TCP ACK falls within 48 bytes with null encap otherwise 56 bytes -> two cells)
- Uses SNPA:s in L2 addressing

  Sub Network Point of Attachment (MAC, VC, DLCI)
- Supports
  - Point-to-point links

  - Broadcast links
     Uses multicast MAC addresses in communication



## Addressing

- IS-IS uses OSI addressing at L3
  - Network Service Access Point (NSAP)
    - Also used in ATM, CMIP ...
  - Conceptually max 20 byte long address format
  - Different structuring depending on sponsoring organisation

and usage



Initial Domain Part Domain Specific Part



## **NSAP Addresses**

| Address Domain                                  | Authority                   | AFI   |
|-------------------------------------------------|-----------------------------|-------|
| X.121 (X.25)                                    | ITU TSB                     | 36/37 |
| ISO Data Country Code<br>(DCC)                  | National Standard Bodies    | 38/39 |
| E.164 (ISDN)                                    | ITU TSB                     | 44/45 |
| ISO 6523 International<br>Code Designator (ICD) | British Standards Institute | 46/47 |
| Local                                           |                             | 48/49 |
|                                                 |                             |       |



## IS-IS NSAP Addressing

- Special version of NSAP address Network Entity Title (NET)
  - Area ID defines the L2 or L1 area the router belongs to
  - System ID is unique identifier of system within the area
  - Same functionality as OSPF router-ID
  - Selector is internal process ID with IP routers this is always 00

| 1 | Area ID (AID) |                | SysID            | ProsesID   |
|---|---------------|----------------|------------------|------------|
| ľ |               |                |                  |            |
| l | AFI<br>(1)    | AREA<br>(0-12) | System ID<br>(6) | SEL<br>(1) |



#### Addressing

- Administration of SysID is similar to administration of Router-ID

  - It should be unique within domain
     Duplicates cause problems for SPF
  - SPF is executed over sysIDs not over prefixes
     It should be easily understandable (helps troubleshooting)
- One convention is to use IP address of the loopback interface as the source for this information (like in OSPF)

  Loopback IP address: 10.100.100.4
- - Hex encoded zeroes at front: 0000.0A64.6404
  - Hex encoded zeroes at end: 0A64.6404.0000
  - Positional decimal coding: 0101.0010.0004Direct decimal coding: 1010.0100.4000



Lic.(Tech.) Marko Luoma (8/22)

#### Addressing

- AreaID (AID) is coded in the frontpart of the NET
  - First octet is AFI but with NET it does not have general meaning
    - · NET addresses are not visible outside the domain
    - Good practise to use local AFIs 0x49
  - The rest is actual area identifier
    - Upto 12 bytes (if present)
    - No special area identifiers
    - OSPF: backbone 0 or 0.0.0.0
    - IS-IS: L2 can be which ever area ID



Lic.(Tech.) Marko Luoma (9/22)

### Area

- IS-IS area is determined by router NET
- IS-IS area is determined by router NET

  Router can have multiple NETs

   Resulting multiple parallel adjacencie

   Area boundary is the logical boundary defined by the adjacencies

   There either is or not adjacency over particular link

  Two types of areas

   L2 e.g. Backbone

  L1 e.g. Non-backbone

  Three types of routers

   L1 router

   L2 router

   L1/L2 router

- L1 L2 L1 L2 L2 L1/L2 Different
  L1/L2 Same
  L1/L2 Different L1/L2 L1/L2 Same L1 + L2



## **Broadcast support**

- - Exponential increase of adjacencies over the number of nodes sharing the link and area

  - and area

    Pseudonode emulation

    Link is emulated as a node with zero cost

    Implemented as designated router (DR) Designated Intermediate System (DIS)

    Reflector of routing information

    Adjacencies only to DR / DIS



## **Broadcast support**

- Pseudonode emulation
  - Lowers the amount of link state traffic
  - Saves processing
     Saves link capacity Adds ghost into SPF calcu





## **Broadcast support**

- - Only one intermediate system acts as a pseudo-node
     L2 multicast addresses used
     0180.c200.0014: AllL1ISs
     0180.c200.0015: AllL2ISs

  - Everybody hears everybody
  - Fullmesh of adjacencies
- - Two routers act as pseudonodes

    Designated Router

    Backup Designated Router

  - L3 multicast addresses used
    - 224.0.0.5: AllSPFRouters
       From DR to clients
       224.0.0.6: AllDRouters

    - From clients to DRs



#### IS-IS and OSPF

- IS-IS

  Operates on top of L2-interface
  NLPID coded
  Link state operation
  Dijkstra SPF
  Two level hierarchy
  Level-1
  Level-2
  Area border on links
  Pseudonode emulation on LANs
  Designated Roure (DIS)
  Designed for OSI CLNP
  Support for IP added later on

- OSPF

  Operates on top of IP
  Protocol 89
  Link state operation
  Dijkstra SPF
  Two level hierarchy
  Backbone
  Other area
  Area border on nodes
  Split nodes
  Pseudonode emulation on LANs
  Designated Router (DR)
  Backup Designated Router (BDR)
  Designed for IP
- Designed for IP



Lic.(Tech.) Marko Luoma (14/22)

#### IS-IS vs OSPF

- OSPF

  - Positional fields with 32-bit alignment
    Link State Database (LSDB) presented as LSAs
     Content mixture of positional coding and TLV-coding

  - Unknown LSA types are discarded (not flooded)

- messages
   No particular alignment
  Link State Database (LSDB)
  presented as LSPs
- Content TLV coded
- Unknown messages are ignored (flooded)
- Actual information about the network is in TLVs
  - Easily extensible to new features



## **OSPF LSDB**

- Built from the Link State Advertisements (LSA)
- Separate protocol elements and state machines handle the synchronization

  - LSAs grouped into LSUpdates during flooding
     LSUpdates are built individually at each hop based on accepted LSAs
  - LS Acknowledge
  - Each LSA has to be acknowledged otherwise they are retransmitted LS Request
     Missing or outdated information can be updated from the neighbor

  - Database description LSDB structure as LS headers





# LSA types

- OSPF contains separate LSA type for each different information element
  - Tightly coded message structures

  - Optimized for 32bit processing
     LSAs are valid only on certain points of network and areas
  - Unknown LSA types are
    - rejected

      Flooding is based only on accepted LSAs

| Type | LSA Name           | Description               |
|------|--------------------|---------------------------|
| 1    | Router             | Link information          |
| 2    | Network            | DR adjacent RIDs          |
| 3    | Network Summary    | Prefixes from other area  |
| 4    | ASBR Summary       | Address of ASBR           |
| 5    | AS External        | External prefixes         |
| 6    | Group membership   | MOSPF groups              |
| 7    | NSSA               | Not So Stub Area Prefixes |
| 8    | External Attribute | BGP attributes            |
| 9    | Opaque (link)      | Traffic Engineering       |
| 10   | Opaque (area)      | Hitless Restart           |
| 11   | Opaque (AS)        | Optional Capabilites      |



#### IS-IS LSDB

- Built from Link State PDUs (LSP)
  - LSPs are basically TLV triplets
    - Type (Code) defines the format of value
       Length defines the length of TLV
    - Informational element to be processed.
  - LSP carries several TLV coded elements (default maximum 1492 bytes per LSP)
  - LSPs are flooded as is
    - Information is delivered intact from the originator to all of the routers in the area
       If router does not support certain TLV it just ignores the TLV
    - » Gradual update of capabilities



### IS-IS LSDB

- · Simple state machine
  - Neighbour aquiry
    - Hello protocol
  - Database synhronization and Flooding
    - Complete Sequence Number PDUs
    - Partial Sequence number PDUs
    - Link State PDUs
- Synchronization is based on periodical descriptions of complete



#### Some IP related TLVs

- Area Addresses (C=1)
  List of all AIDs present at sender
  Neighors (C=2)
  List of senders neighbors (SysID)
  Metrics to reach neighbors
  Protocols supported (C=129)
  NEIDs of supported protocols
  Protocols uponted (C=129)
  IP Interface Addresses (C=132)
  IP addresses of IS-IS interfaces on the sender
  IP Internal Reachability (C=128)
  IP prefixes directly connected to sender and their metrics

- IP External Reachability (C=130)
   IP prefixes external to IS-IS domain
   Extended IS Reachability (C=22)
   Similar than neighbors but wide metrics
   Wide metrics = 6 bits
   Wide metrics = 24 bits
   Extended IP Reachability (C=135)
   Same as internal and External but with wide metrics
   Up/Down bit for controlled route leaking



## Overload

- In large carrier networks restarting a router causes reload in
  - IGP
- Fast convergence (few tens of seconds)
  - IS-IS faster than OSPF due to its simpler state machine
  - BGP
- Slow convergence if default free (may take minutes to load all Overload bit in IS-IS makes router present in the network but not candidate for forwarding transit traffic
- - Timed clearing of overload bit is common feature in NOS
    - Causes new calculation of SPF when bit is cleared



Lic.(Tech.) Marko Luoma (22/22)

## OSPF vs IS-IS

#### OSPF

- SPF
  Complex
  Easier to manage
  Default behavior is to do
  everything that adjacent is
  capable
  Difficult to add new features

- One are control Good area control Good area control Good for corporate environments Dependens on 32bit IP addresses

  Architectural dependency

  OSPFv3 changes this
- - Requires routing policies
     Default behavior is not to do anything but basic LS / SPF Easier to add new features

- Scalable on single area
  Good for carrier environments
  No architectural depencies to IP
  addresses