IS-IS versions

- IS-IS
 - ISO 10589
 - OSI network layer routing protocol
 - Works only with
 - CLNS / CLNP
 - OSI Network protocol for connectionless services

- Integrated IS-IS
 - RFC 1195
 - Integration of IP addresses into OSI CLNP reference model
 - Three operation modes:
 - Pure CLNS
 - Pure IP
 - Mixed CLNS/IP
 - Operation is always based on CLNS model

IS-IS

- Linkstate protocol like OSPF
- Dijkstra SPF
- Operates directly on top of link layer
- Parallel to IP
 - Pros: Independent of IP addressing
 - Cons: Difficulties with ATM null encapsulation (TCP ACK falls within 48 bytes with null encaps otherwise 56 bytes → two cells)
- Uses SNAPs in L2 addressing
 - Sub Network Point of Attachment (MAC, VC, DLCI)
- Supports
 - Point-to-point links
 - Broadcast links
- Uses multicast MAC addresses in communication

Addressing

- IS-IS uses OSI addressing at L3
- Network Service Access Point (NSAP)
 - Also used in ATM, CMIP ...
 - Conceptually max 20 byte long address format
 - Different structuring depending on sponsoring organisation and usage

<table>
<thead>
<tr>
<th>NSAP Addresses</th>
<th>Address Domain</th>
<th>Authority</th>
<th>AFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.121 (K.25)</td>
<td>ITU-TSB</td>
<td>36-37</td>
<td></td>
</tr>
<tr>
<td>ISO Data Country Code (IOC)</td>
<td>National Standard Bodies</td>
<td>38-39</td>
<td></td>
</tr>
<tr>
<td>E.164 (ISDN)</td>
<td>ITU-TSB</td>
<td>44-45</td>
<td></td>
</tr>
<tr>
<td>ISO Basic International Code Designator (ICD)</td>
<td>British Standards Institute</td>
<td>46-47</td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td></td>
<td>48-49</td>
<td></td>
</tr>
</tbody>
</table>

IS-IS NSAP Addressing

- Special version of NSAP address – Network Entity Title (NET)
- Area ID defines the L2 or L1 area the router belongs to
- System ID is unique identifier of system within the area
- Same functionality as OSPF router-ID
- Selector is internal process ID with IP routers this is always 00

System ID	Selector	Area ID	Level
00 | 00 | 00 | 00

S-38.3192 Network Service Provisioning

© Marko Luoma 2007
Addressing

- Administration of SysID is similar to administration of Router-ID
 - It should be unique within domain
 - Replaces cause problems for SPF
 - SPF is executed over sysIDs not over prefixes
 - It should be easily understandable (helps troubleshooting)
 - One convention is to use IP address of the loopback interface as the source for this information (like in OSPF)

- Loopback IP address: 10.100.100.4
 - Hex encoded zeroes at front: 0000.0A64.6404
 - Hex encoded zeroes at end: 0A64.6404.0000
 - Positional decimal coding: 0101.0010.0004
 - Direct decimal coding: 1010.0100.4000

Area

- IS-IS area is determined by router NET
 - Router can have multiple NETs
 - Resulting multiple partial adjacencies
 - Area boundary is the logical boundary defined by the adjacencies
 - There are no adjacency over particular link
- Two types of areas
 - L2 e.g. Backbone
 - L1 e.g. Non-backbone
- Three types of routers
 - L1 router
 - L2 router
 - L1/L2 router

Broadcast support

- Problem of scaling the number of adjacencies
 - But is this really a problem
 - With OSPF: YES
 - With IS-IS: NO
 - Broadcast networks are not that nice in SPF calculations due to ghost nodes
 - Make broadcast links point-to-point when it is used at such
 - Adjacency is formed between each router which fulfills area requirements on the same link
 - Exponential increase of adjacencies over the number of nodes sharing the link and area
 - Pseudonode emulation
 - Link is emulated as a node with zero cost
 - Implemented as designated router (DR) / Designated Intermediate System (DIS)
 - Reflector of routing information
 - Adjacencies only to DIS / DIS

- IS-IS
 - Only one intermediate system acts as a pseudonode
 - L2 multicast addresses used
 - 0180.0000.0014
 - 0180.0000.0015
 - Everybody hears everybody
 - Fullmesh of adjacencies

- OSPF
 - Two routers act as pseudonodes
 - Designated Router
 - Backup Designated Router
 - L3 multicast addresses used
 - 224.0.0.5: AllSPFRouters
 - 224.0.0.6: AllDRouters
IS-IS and OSPF

- IS-IS
 - Operates on top of L2 interface
 - NLPID coded
 - Link state operation
 - Dijkstra SPF
 - Two level hierarchy
 - Level-1
 - Level-2
 - Area border on links
 - Pseudonode emulation on LANs
 - Designated Router (DIS)
 - Support for IP added later on

- OSPF
 - Operates on top of IP
 - Protocol 89
 - Link state operation
 - Dijkstra SPF
 - Two level hierarchy
 - Backbone
 - Other area
 - Area border on nodes
 - Split nodes
 - Pseudonode emulation on LANs
 - Designated Router (DR)
 - Backup Designated Router (BDR)

IS-IS vs OSPF

- OSPF
 - Packet format is variable
 - Positional fields with 32-bit alignment
 - Link State Database (LSDB) presented as LSAs
 - Content mixture of positional coding and TLV coding
 - Unknown LSA types are discarded (not flooded)

- IS-IS
 - Positional header with TLV-coded messages
 - No particular alignment
 - Link State Database (LSDB) presented as LSPs
 - Content TLV coded
 - Unknown messages are ignored (flooded)
 - Actual information about the network is in TLVs
 - Easily extensible to new features

OSPF LSDB

- Built from the Link State Advertisements (LSA)
- Separate protocol elements and state machines handle the synchronization
 - LS Update
 - LSA grouped into LSUpdates during flooding
 - LSUpdates are built individually at each hop based on accepted LSAs
 - LS Acknowledge
 - Each LSA has to be acknowledged otherwise they are retransmitted
 - LS Request
 - Missing or outdated information can be updated from the neighbor
 - Database description
 - LSDB structure as LS headers

OSPF State Machine

- Four phases
 - Neighbour enquiry
 - Init + 2-way: Hello protocol
 - Database initialization
 - Exchange + Loading: DD
 - Database synchronization
 - Exchange + Loading: LS request, LS update, LS acknowledge
 - Flooding
 - Full: LS update, LS acknowledge

LSA types

- OSPF contains separate LSA type for each different information element
 - Tightly coded message structures
 - Optimized for 32bit processing
 - LSAs are valid only on certain points of network and areas
 - Unknown LSA types are rejected
 - Flooding is based only on accepted LSAs

OSPF LSDB

- Built from Link State PDUs (LSP)
 - LSPs are basically TLV triplets
 - Type (Code) defines the format of value
 - Length defines the length of TLV
 - Informational element to be processed
 - LSP carries several TLV coded elements (default maximum 1492 bytes per LSP)
 - LSPs are flooded as is
 - Information is delivered intact from the originator to all of the routers in the area
 - If router does not support certain TLV it just ignores the TLV
 - Gradual update of capabilities
IS-IS LSDB

- Simple state machine
 - Neighbour enquiry
 - Hello protocol
- Database synchronization and Flooding
 - Complete Sequence Number PDUs
 - Partial Sequence number PDUs
 - Link State PDUs
- Synchronization is based on periodical descriptions of complete database

Some IP related TLVs

- Area Addresses (C=1)
 - List of all AIDs present at sender
- Neighbors (C=2)
 - List of sender’s neighbors (SysID)
- Protocols supported (C=129)
 - NLPRIDs of supported protocols:
 - IPv4 = 204
- IP Interface Addresses (C=132)
 - IP addresses of IS-IS interfaces on the sender
- IP Internal Reachability (C=128)
 - IP prefixes directly connected to sender and their metrics
- Extended IS Reachability (C=22)
 - Similar than neighbors but wide metrics
- IP External Reachability (C=130)
 - IP prefixes external to (IS-IS domain)
- Extended IS Reachability (C=22)
 - Similar than neighbors but wide metrics
- Extended IP Reachability (C=135)
 - Same as Internal and External but with wide metrics

Overload

- In large carrier networks restarting a router causes reload in
 - IGP
 - Fast convergence (few tens of seconds)
 - IS-IS faster than OSPF due to its simpler state machine
 - BGP
 - Slow convergence if default free (may take minutes to load all the prefixes)
 - Overload bit in IS-IS makes router present in the network but not candidate for forwarding transit traffic
 - Timed clearing of overload bit is common feature in NOS
 - Causes new calculation of SPF when bit is cleared

OSPF vs IS-IS

- OSPF
 - Complex
 - Easier to manage
 - Default behavior is to do everything that adjacent is capable
 - Difficult to add new features
 - Good area control
 - Dependent on 32bit IP addresses
 - Architectural dependency
 - OSPFv3 changes this
- IS-IS
 - Less complex
 - Difficult to manage advanced features
 - Responds routing policies
 - Default behavior is to do anything but basic LS / SPF
 - Easier to add new features
 - Scalable on single area
 - Good for carrier environments
 - No architectural dependency to IP addresses