

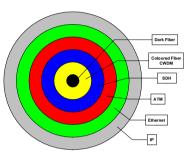
Lic.(Tech.) Marko Luoma (1/58)

S-38.3192 Verkkopalvelujen tuotanto S-38.3192 Network Service Provisioning

Lecture 2: L2 Network Technologies

Lic.(Tech.) Marko Luoma (3/58)

Core Network

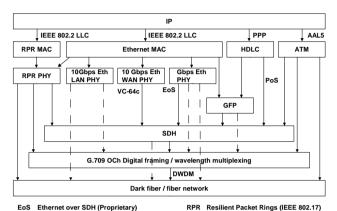

- Connects MAN networks together
- Requires high bandwidth technologies with long range passive operation
 - Transmission speed and distance without repeaters tend to be inversely proportional
 - 1Gbps Ethernet -> 80-150km in SM-fiber with ZXtransmitter
 - 10Gbps Ethernet -> 10-40km in SM-fiber with ZXtransmitter
- Typical medias are
 - Fiber (Single Mode)
 - Radio (Microwave, Satellite)

Lic.(Tech.) Marko Luoma (2/58)

Metropolitan Area Network

- MANs are build to connect urban locations with a high bandwidths
- Requires high bandwidth technologies with intermediate range passive components
 - Usually based to
 - Optical fibers
 - Single mode
 - Radio
 - LMDS, MMDS,WiMAX, FlashOFDM

Lic.(Tech.) Marko Luoma (4/58)


Technologies

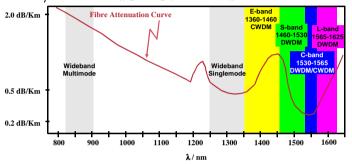
- · High bandwidth requirements
- Transmission speeds are jumping up with constant rate
 - 1995: 155Mbps (SDH/ATM)
 - 2000: 2.4Gps (SDH)
 - 2004: 10 Gbps(SDH/Ethernet)
 - 2000-2004 wavelength technologies brought a new means to increase capacity
 - · DWDW
 - CWDM

- Frame based multiplexing
 - Irrespective of low layer functionality
 - Fiber/Radio
 - Options today are
 - · GMPLS
 - · SDH
 - ATM
 - · Ethernet
 - LINEIN
 - GFP
 - RPR

Lic.(Tech.) Marko Luoma (5/58)

Lic.(Tech.) Marko Luoma (7/58)

Modern fiber communication


- The goal is to push the limits of wideband fiber communications
 - Wideband transmitters are expensive and electrical part with high speed is error prone
 - Multiple narrowband transmitters achieve same performance on lower cost and lower error margin
 - To achieve longer transmission distances
 - Lower attenuation of lower frequencies serves this goal
 - Narrow transmission window in C-band
 - » Narrow spacing of transmission channels

Lic.(Tech.) Marko Luoma (6/58)

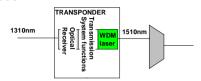
Fiber communication

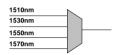
 Fiber optics offers wide spectrum of which only narrow part is used by conventional wideband fiber transmitters

Lic.(Tech.) Marko Luoma (8/58)

Modern fiber communication

- Packing of several channels into a single media causes multiple problems related to interferences
 - Not just within fiber but also between channels
 - How to inject multiple closely spaced signals into a fiber
 - · How to detect them in receiver
 - · How to control their defects caused by
 - Dispersion
 - Attenuation





Lic.(Tech.) Marko Luoma (9/58)

WDM

- Effectively N fold increase of transmission capacity from the same fiber infrastructure
 - Individual lambdas can be used independently
 - Usage depends on transponder unit

Lic.(Tech.) Marko Luoma (11/58)

WDM

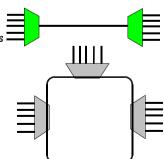
- DWDM
 - Narrow channel spacing
 - Components need to be compensated for temperature effects
 - Expensive
 - More channels to choose from
 - nonlinearities of fibers can be avoided by selecting proper wavelengths

- · CWDM
 - Wide channel spacing
 - Component requirements are looser
 - Cheaper lasers and receivers
 - Less channels
 - Not suitable for longhaul networks
 - Suitable for MANs

Lic.(Tech.) Marko Luoma (10/58)

WDM

- · Two operative versions
 - CWDM Coarse Wavelength Division Multiplexing
 - Current spec 8 channels between (1470 1610nm / 20nm steps)
 - New spec 18 channels between (1271 1611nm / 20nm steps)
 - DWDM Dense Wavelength Division Multiplexing
 - ITU Grid (100 Ghz resolution)
 - 50 channels between 1569.80nm to 1611.79nn
 - 50 channels between 1529,75nm to 1569,59nm
 - 50 channels between 1491.69nm to 1529.55nm



Lic.(Tech.) Marko Luoma (12/58)

WDM

- · Can be used as link or network technology
 - Link technology
 - Multiplexers at the ends of the links =
 - Network technology
 - Optical switching components
 - Optical delay lines
 - Wavelength conversion
 - Photonic switching
 - · Collision free routing
 - · Crosstalk issues

Lic.(Tech.) Marko Luoma (13/58)

WDM

- Pros:
 - Protocol independent
 - Virtual fiber
 - Multiplexing different traffic through different wavelengths
- · Cons:
 - Depending on system pay as you go may not be possible
 - The number of required channels need to be estimated for the lifetime of systems
 - Filters are designed for certain amount of wavelengths and spacing

Lic.(Tech.) Marko Luoma (15/58)

Frame Multiplexing

- Synchronous
 - Fixed usage of resources
 - Information does not need
 L2 addresses
 - Wastes resources if communication is not CBR
 - Easy to integrate
 - SDH

- Asynchronous
 - Free usage of resources
 - Information requires L2 addresses
 - Does not waste resources
 - Requires additional logics to control resource usage
 - ATM, Ethernet

Lic.(Tech.) Marko Luoma (14/58)

Frame Multiplexing

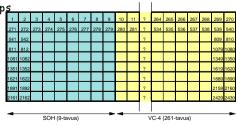
Synchronous multiplexing

Fixed usage of resources

D C B A D C B A D C B A D C B A D C B A

Asynchronous multiplexing

• Free usage of resources

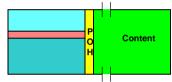


Lic.(Tech.) Marko Luoma (16/58)

SDH

- Synchronous frame based multiplexing of transmitted signals
 - Link framing is done with 2430 byte frames
 - Generation interval is 125us -> reflects the original coding of speech with 8kHz sampling rate

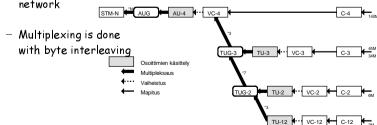
Datarate = 155,52Mbps



Lic.(Tech.) Marko Luoma (17/58)

SDH

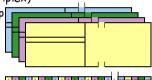
- Link frames contain virtual containers which carry the actual information
 - Header information (POH)
 - Flow and error control information between edge devices
 - Content
 - Virtual containers form point-to-point permanent connections
 through SDH network



Lic.(Tech.) Marko Luoma (19/58)

SDH

- Fractions are generated by multiplexing different streams of content into individual frame
 - Several virtual containers destined to same or different points in network _____ ___



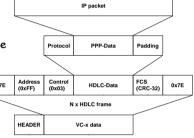
Lic.(Tech.) Marko Luoma (18/58)

SDH

- SDH hierarchy makes possible to use multiples and fractions of basic rate
 - Multiples are generated by injecting multiple (factor of four) link frames within time-slot
 - STM-1: 155.52 Mbit/s (basic rate)
 - STM-4: 622.08 Mbit/s (first multiplex)
 - STM-16: 2488,32 Mbit/s (second multiplex)
 - STM-64: 9953.28 Mbit/s (third multip)
 - Operation is byte synchronous
 - Timing of individual bytes in multiplex is same than in basic rate frame

Lic.(Tech.) Marko Luoma (20/58)

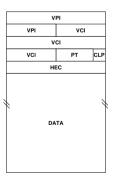
SDH


- SDH supports also concatenation of resources
 - Old version strict mode
 - Clear channel operation (small 'c' after the virtual container type)
 - All VC:s in different frames form a single bit stream
 - Not feasible in SDH networks
 - Feasible if SDH is used as a point to point link technology
 - New version flexible mode
 - Concatenation is used only in edge devices
 - Supports SDH networks
 - Concatenated VC:s need not be with same speeds
 - » Even over different fibers

Lic.(Tech.) Marko Luoma (21/58)

SDH

- IP can not be used directly with SDH
 - Packet over Sonet (PoS) is method for delivering IP packets in SDH
 - · Additional framing
 - IP packet into PPP-packet
 - PPP packet into HDLC frame
 - HDLC frame into SDH virtual container



Lic.(Tech.) Marko Luoma (23/58)

ATM

- · Asynchronous frame based multiplexing
- · Capabilities for dynamic switching
 - Not only PVP's or PVC's
- · Connection oriented
- Fixed packet structure
 - 5 bytes of headers
 - Addresses (VPI, VCI)
 - Packet content type (PT)
 - Priority (CLP)
 - Checksum (HEC)
 - 48 bytes of data

Lic.(Tech.) Marko Luoma (22/58)


SDH

• Pros:

- Optimized for TDM services (large income from leased line services)
- Fully compatible with metro ring networks (SDH ADM rings)
- Reliable and fast failure recovery (roughly 50ms with APS)
- Price of SDH continuously coming down

Cons:

- Not cost effective for burst data traffic
 - Capacity in SDH network can only be allocated on multiples of 2Mbps
- No multiple QoSs for different service charges
- Expensive interfaces at routers

Lic.(Tech.) Marko Luoma (25/58)

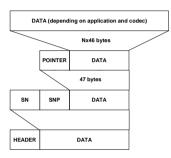
ATM


- · Can be used
 - As is over the transmission media
 - · Assumes low bit error ratio from the media
 - Over any other L2 protocol
 - Benefits from the error control of L2 media
- Why sensitivity to BER
 - Packet has not markers
 - Delineation is accomplished through state-machine which goes through packet bit by bit and looks header checksum matches
 - Sensitive to errors if high BER

Lic.(Tech.) Marko Luoma (27/58)

ATM

- 48 byte content field is too little for data networks
 - Fragmentation of data packets into multiple ATM cells
 - Separate protocol layer to handle the fragmentation and reassembly of protocol packets



Lic.(Tech.) Marko Luoma (26/58)

ATM

- 48 byte content field is too big for voice communications
 - Separate protocol layers to handle
 - · Sub cell delineation
 - Timing
 - · Sequencing
 - Clear channel communication for video applications

Lic.(Tech.) Marko Luoma (28/58)

ATM

- Framing options for IP traffic in ATM links:
 - RFC2684: Multiprotocol Encapsulation over ATM Adaptation Layer 5 (Classical IP)
 - Uses LLC/SNAP encapsulation of traffic within ATM adaption layer 5

Destination SAP =AA
Source SAP =AA
Frame Type =03
OUI =00-00-00
Ethertype =08-00
IP packet
PAD (0-47 octect)
CDCC IIII (444)
CPCS-UU (1 octect)
CPI (1 octect) =0x00
, ,
CPI (1 octect) =0x00

AA-AA-03 -> SNAP

 $\begin{array}{l} 00\text{-}00\text{-}00 \text{-}> Ethertype \\ 08\text{-}00 \text{-}> IPv4 \end{array}$

AAL5 -trailer

Lic.(Tech.) Marko Luoma (29/58)

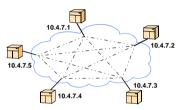
ATM

- Framing options for IP traffic in ATM links:
 - RFC2364: Point to Point Protocol over ATM
 - Uses in AAL5 frames either
 - raw PPP packets
 - PPP on LLC/NLPID packets

Destination SAP	
Source SAP	LLC-otsikko
Frame Type (UI)	
NLPID (PPP)	Network Layer Protocol ID
Protocol ID	
PPP Information	PPP
Padding	
PAD (0-47 octect)	
CPCS-UU (1 octect)	
CPI (1 octect)	AAL5 -trailer
Length (2 octect)	
CRC (4 octect)	

Lic.(Tech.) Marko Luoma (31/58)

ATM


- Pros:
 - Easy capacity management
 - Virtual short-cuts without routing
 - MPLS ready
 - Fault tolerant if ATM-level dynamic routing is used
- Cons:
 - Additional layer of technology
 - Not good for framing itself
 - Expensive interfaces at routers
 - Subinterface structure in networked ATM

Lic.(Tech.) Marko Luoma (30/58)

ATM

- ATM network is from IP perspective
 - NBMA network
 - Separate virtual connection between each and every router
 - Large number of connections and adjacencies in routing
 - Usually subinterface per connection

Lic.(Tech.) Marko Luoma (32/58)

Ethernet

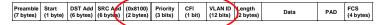
- Technology has scaled to level where conventional core network technologies are
 - STM-64 and 10GbE are the same
 - Even in optical interface level they are the same but ethernet is only 20% of the price
 - STM-256 will be the base for 40GbE?
 - 1GbE is based on fiber channel but can be multiplexed in STM-16 networks by having two independent connections

Lic.(Tech.) Marko Luoma (33/58)

Ethernet

- 106bE
 - IEEE 802.3ae
 - Full duplex
 - Adjustable MAC speed
 - 10Gb in LAN
 - 9.29Gb in WAN
 - Optical media
 - SDH WAN Phy
 - 10Gb LAN Phy

- 16bE
 - -802.3z
 - CSMA/CD + Full Duplex
 - Optical and copper media
 - Fiber channel Phy


Preamble (7 bytes)	DST Add (6 bytes)		Data	PAD	FCS (4 bytes)

Lic.(Tech.) Marko Luoma (35/58)

Virtualisation of Ethernet

- Virtual LAN is a network within the network
 - It logically creates virtual networks on top of physical network
 - · Virtuality is realized with additional fields in the frame
 - Tag Frame ID: 0x8100 for 802.1g
 - Priority: 802.1p priority
 - CFI: Canonical format indicator (MAC address can be or not)
 - VLAN ID: 4096 VLAN IDs
 - » Only few (read expensive) devices support simultaneously this number

Lic.(Tech.) Marko Luoma (34/58)

Ethernet

- Possibility to build transparent LAN services
 - Majority of LAN networks are build with ethernet
 - Some applications benefit from the fact that ethernet headers are preserved
 - Possibility to have same IP subnet on both ends
 - WAN network is transparent for ethernet network
 - No PPP protocol in between SDH and Ethernet
 - Core network technologies are evolving
 - · Metro VLAN separation
 - Core provider framing

Lic.(Tech.) Marko Luoma (36/58)

VLAN

- Separation of network resources to logical units is based on forwarding information databased (FID)
 - In independent mode, each VLAN has its own FID
 - Clients residing in different forwarding table are not able to communicate without external help
 - In shared mode, part of VLANs share a common FID
 - Clients residing (symmetrically) in same FID are able to communicate together
- · Communication between VLANs is established with
 - 'Misconfigured' bridge that connects VLANs together
 - Router forwarding packets between VLANs

Lic.(Tech.) Marko Luoma (37/58)

VLAN association

- · Association of devices to VLANs is based on
 - Device tagging (end system is VLAN aware) rarely
 - Port based VLAN membership (switchports are assigned to particular VLAN) - commonly
 - Protocol inspection (MAC address, ethertype, IP address, TCP/UDP port) - only in service switches

Lic.(Tech.) Marko Luoma (39/58)

Port based VLANs

- Ingress filtering rules:
 - Received frame is untagged
 - Forward using PVID
 - Discard
 - Received frame is tagged
 - Forward using VID
 - -VID = 0:
 - » Use only P-bits, forward using PVID
 - -VID = 1
 - » Default tree, all interfaces
 - Forward using PVID
 - Discard

Lic.(Tech.) Marko Luoma (38/58)

VLANs

- PVID ~ Port VLAN identifier
 - Each and every switchport is assigned to belong to particular VLAN
 - Incoming untagged traffic is forwarded by using this VLANs FID
 - Address learning is bound to that FID
 - Incoming tagged traffic is associated to VLAN based on VID or FID depending on ingress filtering rules

- VID ~ VLAN identifier
- If frame is
 - Coming in from a trunk interface it contains 802.1q tag which carries VTD
 - Going out to trunk link packet is coded to 802.1g tag mode
 - VID usually is PVID from the ingress port

Lic.(Tech.) Marko Luoma (40/58)

Port based VLANs

- Egress filtering rules
 - Interface is in untagged mode
 - Forward untagged frame
 - Use configured priorities
 - Interface is in tagged mode
 - Set tag based on classification rules
 - Ingress VID
 - PVID
 - P-bits

Lic.(Tech.) Marko Luoma (41/58)

Protocol VLANs

- Each port belongs to VLAN based on PVID
 - Non matching traffic is forwarded with PVID FID
 - Matching traffic e.g. Traffic having frametype + ethertype defined in protocol group database is forwarded with FID defined by protocol group VID
 - Depends on the
 - encapsulation: ethernet, LLC, SNAP etc
 - ethertype: ARP, IP, IPX, etc

Lic.(Tech.) Marko Luoma (43/58)

Provider Backbone

- * 802.1ad
 - Q-in-Q
 - Provider tagging
 - Enterprise addresses are carried by provider switches in customer dependent service VLANs

Enterprise Provider Provider Enterprise Data	
--	--

- * 802.1ah
 - M-in-M
 - Provider encapsulation
 - Enterprise addresses are invisible for provider switches

	_			
		Enterprise Header	Enterprise Tag	Data

Lic.(Tech.) Marko Luoma (42/58)

Ethernet priority

- 802.1p is amendment in 802.1q
 - Allow traffic prioritization within Ethernet networks
 - 3 bits -> 8 priorities
 - Number of gueues dependent of HW
 - At minimum strict priority queuing between queues
 - Mapping traffic to queues is dependent on
 - Number of queues
 - Configured policy (egress filtering)
 - MAC address
 - Ethertype
 - DSCP
 - Address

Lic.(Tech.) Marko Luoma (44/58)

Q-in-Q Frame Format

- · Provider tagging cascades several Q-tags into the frame
 - Ethertype 0x88a8
 - Priority is provider dependent not copied from customer settings
 - Provider Tag = S-Tag = Service Tag
 - P-VLAN ID = EVC ID

C-DST	C-DST	(0x88a8)	P-Priority	P-CFI	P-VLAN ID	(0x8100)	C-Priority	C-CFI	C-VLAN ID	D-1-	FCS
(6 bytes)	(6 bytes)	(2 bytes)	(3 bits)	(1 bit)	(12 bits)	(2 bytes)	(3 bits)	(1 bit)	(12 bits)	Data	(4 bytes)

Lic.(Tech.) Marko Luoma (45/58)

M-in-M Frame Format

- · Provider encapsulation allows second layer of operation
 - With or without Q-in-Q-tag
 - With or without Q-tag
- First tag in M-in-M header is traffic engineering tunnel tag
 - Ethernet traffic engineering
- Second tag in service tag = EVC ID

P-DST P-DST (6 bytes)	(0x8100)	PQ- Priority	PQ-CFI	PQ-VLAN ID	(M-in-M)	Reserved	PT (1 bit)	Service ID (24 bits)
(6 bytes) (6 bytes	(2 bytes)	(2 hite)	(1 Dit)	(42 hite)	(2 bytes)	(7 Dits)	(1 Dit)	(24 Dits)

P-FCS (4 bytes)

C-DST	C-DST	(0x8100)	C-Priority	C-CFI	C-VLAN ID	Data	C-FCS
(6 bytes)	(6 bytes)	(2 bytes)	(3 bits)	(1 bit)	(12 bits)	Data	(4 bytes)

Lic.(Tech.) Marko Luoma (47/58)

Ethernet

- Pros:
 - Optimized for burst data services
 - No protocol conversion for interfacing with routers and LAN switches
 - Plug-and-play ideology in operation
- Cons:
 - Support for TDM services has not matured
 - Poor in trouble isolation and network recovery
 - Spanning tree operation takes seconds to recover large networks

Lic.(Tech.) Marko Luoma (46/58)

M-in-M Frame Format

- M-in-M + Q-in-Q allows scalable provisioning of core + metro services
 - Q-in-Q: Small Metro encapsulation
 - M-in-M: Large Metro and Core aggregation
 - Traffic Engineering
 - State space reduction

P-DST (6 bytes) (9x8100) (2 bytes)	PQ- Priority (3 bits)	PQ-CFI (1 bit)	PQ-VLAN ID (12 bits)		Reserved (7 bits)		Service ID (24 bits)
------------------------------------	-----------------------------	-------------------	----------------------------	--	----------------------	--	-------------------------

P-FCS (4 bytes)

					P-VLAN ID (12 bits)				C-VLAN ID (12 bits)		C-FCS (4 bytes)	
--	--	--	--	--	------------------------	--	--	--	------------------------	--	--------------------	--

Lic.(Tech.) Marko Luoma (48/58)

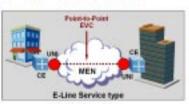
Carrier Grade Ethernet

- Also known as Metro Ethernet (interest group called: Metro Ethernet Forum)
 - Technology perspective
 - · Customer side: semi-transparent Ethernet
 - Provider side: SDH, VPLS, Q-in-Q etc
 - Service definitions
 - Ethernet line (E-LINE)
 - point-to-point
 - Ethernet LAN (E-LAN)
 - multipoint- to-multipoint

Lic.(Tech.) Marko Luoma (49/58)

Perspective

- Ethernet is true service delivery layer
 - IP is artificially brought to the middle while in many cases it is not even needed


Enabled Service over Ethernet	Storage	Internet Access	IP VPN	CESoE	IP Telephony	Video on Demand		
Ethernet Connectivity Service		E-Line and E-LAN (Virtual and Private, MAN and WAN)						
Service Delivery Technology	Ethernet over Fiber	Etherr over SONET/	r ,	Ethernet over RPR	Ethernet over MPLS	Ethernet over WDM		

Lic. (Tech i Marko Leona (51/56)

E-Line and E-LAN Services

- E-Line Service used to create
 - Private Line Services
 - Ethernet Internet Access
 - Point-to-Point VPNs
- E-LAN Service used to create
 - Multipoint VPNs
- Transparent LAN
 Source: Metro Diversel Forum

F.J. D.W. Sandro have

Lic.(Tech.) Marko Luoma (50/58)

Major changes

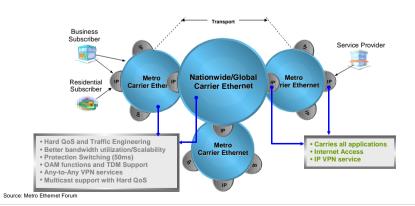
- · Service concept
 - E-LAN and E-Line
- · Connection orientation
 - Ethernet Virtual Connection (EVC)
 - Filter word for distinguishing packets from different connections
- · Q₀S
 - SLA is required for large scale deployment within corporate interconnections
 - Bandwidth control
 - Committed information rate control (inherited form FrameRelay)

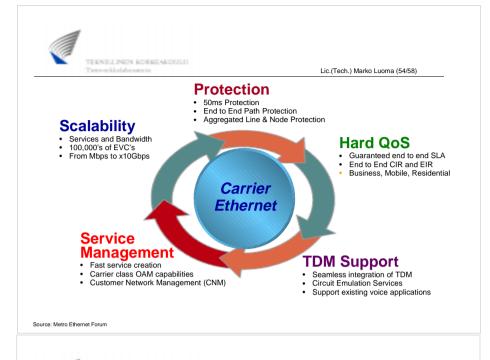
Lic.(Tech.) Marko Luoma (52/58)

Service Attribute	Service Attribute Parameters
EVC Type	Point-to-Point or Multipoint-to-Multipoint
UNI List	A list of UNIs (identified via the UNI Identifier service attribute) used with the EVC
CE-VLAN ID Preservation	Yes or No. Specifies whether customer VLAN ID is preserved or not.
CE-VLAN CoS Preservation	Yes or No. Specifies whether customer VLAN CoS (802.1p) is preserved or not.
Unicast Service Frame Delivery	Specifies whether unicast frames are Discarded, Delivered Unconditionally or Delivered Conditionally
Multicast Service Frame Delivery	Specifies whether multicast frames are Discarded, Delivered Unconditionally or Delivered Conditionally
Broadcast Service Frame Delivery	Specifies whether broadcast frames are Discarded, Delivered Unconditionally or Delivered Conditionally
Layer 2 Control Protocol Processing	Discard or Tunnel per protocol
Service Performance	Specifies the Frame Delay, Frame Jitter and Frame Loss per EVC or frames within an EVC identified via their CE-VLAN CoS (802.1p) value

Source: Metro Ethernet Forum

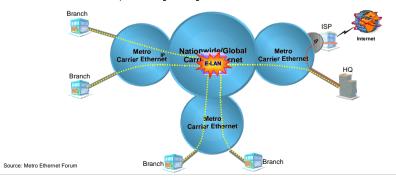
Lic.(Tech.) Marko Luoma (53/58)

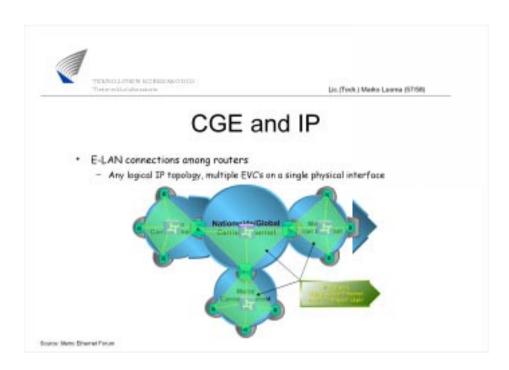

Service Attribute	Service Attribute Parameters
UNI Identifier	A string used to identity of a UNI, e.g., NYCBldg12Rm102Slot22Port3
Physical Medium	Standard Ethernet PHY
Speed	10 Mbps, 100 Mbps, 1 Gbps or 10 Gbps
Mode	Full Duplex or Auto negotiation
MAC Layer	IEEE 802.3-2002
Service Multiplexing	Yes or No. Defines whether multiple services can be on the UNI
UNI EVC ID	A string used identify an EVC, e.g., NYCBldg1Rm102Slot22Port3EVC3
CE-VLAN ID / EVC Map	Mapping table of customer VLAN IDs to EVC
Max. Number of EVCs	The maximum number of EVCs allowed per UNI
Bundling	No or Yes. Specifies that one or more customer VLAN IDs are mapped to an EVC at the UNI
All to One Bundling	No or Yes (all customer VLAN IDs are mapped to an EVC at the UNI).
Ingress Bandwidth Profile Per Ingress UNI	None or <cir, cbs,="" ebs="" eir,="">. This Bandwidth profile applies to all frames across the UNI.</cir,>
Ingress Bandwidth Profile Per EVC	None or <cir, cbs,="" ebs="" eir,="">. This Bandwidth profile applies to all frames over particular EVC.</cir,>
Ingress Bandwidth Profile Per CoS ID	None or <cir, cbs,="" ebs="" eir,="">. This Bandwidth profile applies to all frames marked with a particular CoS ID over an EVC.</cir,>
Layer 2 Control Protocol Processing	Discard, Peer or Pass to EVC per protocol


Source: Metro Ethernet Forum

Lic.(Tech.) Marko Luoma (55/58)

MEF Vision for NGN





Lic.(Tech.) Marko Luoma (56/58)

VPNs in CGE

 Any-to-any Layer 2 VPN to interconnect multiple locations transparently and effectively (with high and guaranteed bandwidth)

Lic.(Tech.) Marko Luoma (58/58)

CGE and IP

- IP networks are collapsed in to two layers
 - Residential customer concentration routers
 - Integrated in DSLAM
 - Border routers
 - For address propagation and policy control
- IP aggregation is vanishing
 - Ethernet aggregation is taking the role of the true transport
 - Even in 3G networks
 - Look for latest ITU drafts for Ethernet aggregation in 3G networks