S-38.3192 Verkkopalvelujen tuotanto
S-38.3192 Network Service Provisioning
Lecture 8: Peering

Part of the material presented in these slides is based on BGP lectures of Olivier Bonaventure
www.info.ucl.ac.be/people/OBO/BGP/

Internet

- The value of Internet is in global reachability
 - Reachability comes from co-operative peering efforts
 - Customer peering (Customer-Provider-Customer relationship)
 - Shared cost peering (Provider-Provider relationship)
- There are roughly 21000 players
 - 15000 of them are Stub ASs
 - 65 are pure transit providers
 - 6000 do both

The structure of Internet is chaos
- Thousands of service providers with highly varying principles in their operation

How packet finds its route through the black box
- BGP forms a structured layout of the whole Internet for packet level transport
 - Reflects the semi-optimal contractual agreements between operators along the route of the packet

Why accepting packets from fellow ISP
- Economic impact
 - Transit traffic
 - Reciprocity
 - Cost reduction
Agreements

- Form the basis between inter-provider communications
 - Small ISPs are customers of larger ones
 - Larger ISPs deliver their customer traffic as their own traffic
 - Larger ISPs deliver their customer traffic as transit traffic
 - Equal size providers exchange their traffic pro bono
 - Both save money by interconnecting directly rather than through 3rd party
 - Mutual agreement for exchanging only their customer traffic

Strict hierarchy

- Based on structural and regulated manner of forming customer/provider relationships
 - Valid in telco operations
 - Operators for a chain of customer/provider relationships
 - Based on regulation of operational arena
 - Local operators
 - Long distance operators
 - International operators
 - Cash flows to the top of the hierarchy
 - Local operators collect the money from end users
 - Middle layers take their premiums

Loose hierarchy
Loose hierarchy

- Local providers compete the local market but share common need to exchange their customer traffic on a local level
 - It is profitable for all to have direct exchange of traffic without 3rd parties
 - Better marginal revenue
 - Requires
 - Interconnection points
 - Bilateral agreement to establish equality
 - Zero payment principle
 » Both parties benefit from peering
 » No mutual transfer of money

Internet

- Naturally loose in hierarchy
- Local ISPs maximize their revenue by minimizing their transit traffic
- Same structure on all levels of hierarchy
- Any connection through the Internet is formed with chain of customer/provider relationships with a single zero payment border
 - Cost of connection is therefore divided into two
 - From source to top of the chain
 - From destination to top of the chain
 - Peering does not cover transit traffic
 - Only one zero payment border

Transit domain

- A transit domain allows external domains to use its own infrastructure to send packets to other domains

Examples
 - FuNET, NorduNET, GEANT, Internet2, BT, Telia, Level3,...
A stub domain does not allow external domains to use its infrastructure to send packets to other domains. A stub is connected to at least one transit domain:

- **Single-homed stub**: connected to one transit domain (S1)
- **Dual-homed stub**: connected to two transit domains (S2-S4)

Examples:

- **Content-rich stub domain**
 - Large web servers: Yahoo, Google, MSN, TF1, BBC, ...
- **Access-rich stub domain**
 - ISPs providing Internet access via CATV, ADSL, ...
 - Saunalahti, Kolumbus, Welho etc

Internet

- **Tier-1 ISPs**
 - Dozen of large ISPs interconnected by shared-cost peering arrangements
 - Form the core of the Internet
 - Provide transit service for T2/T3 service providers

Tier-1 service providers

- AOL Transit Data Network
- AT&T
- BBN
- British Telecom
- Cable and Wireless
- Connect Internet Solutions
- Deutsche Telekom
- Global Crossing
- Level 3
- NTT/Verio
- Optus
- Primus Telecom
- Qwest
- Sprint
- Telstra
- UUNET
- WilTel (Williams Communications)
Internet

- Tier-2 ISPs
 - Regional or National ISPs
 - Customer of T1 ISP(s)
 - Provider of T3 ISP(s)
 - shared-cost with other T2 ISPs

- Tier-3 ISPs
 - Smaller ISPs, Corporate Networks, Content providers
 - Customers of T2 or T1 ISPs
 - shared-cost with other T3 ISPs

Customer-provider peering

- Principle
 - Customer sends to its provider its internal routes and the routes learned from its own customers
 - Provider will advertise those routes to the entire Internet to allow anyone to reach the Customer
 - Provider sends to its customers all known routes
 - Customer will be able to reach anyone on the Internet

Customer-to-Customer peering

- Principle
 - PeerX sends to PeerY its internal routes and the routes learned from its own customers
 - PeerY will use shared link to reach PeerX and PeerX's customers
 - PeerX's providers are not reachable via the shared link
 - PeerY sends to PeerX its internal routes and the routes learned from its own customers
 - PeerX will use shared link to reach PeerY and PeerY's customers
 - PeerY's providers are not reachable via the shared link
Shared-cost peering

- AS1 sends routes of AS\{1,3,4,7\} to AS2
- AS2 sends routes of AS\{2,4,7\} to AS1
 - Not AS3 while those routes come from shared-cost peering
 - Routes from shared-cost peering are not advertised to providers

Direct Approach

- In direct approach peering negotiations are established with open cards
 - Official invitation to peered AS to start negotiations
 - Results
 - Peering formed
 - Direct
 - Partial
 - Conditional
 - Peering not formed

Migration tactics

- Initially transit connection is bought with option to peer when conditions are met
 - Incentive of accumulated cash flow for period of time
 - Risk of not having peering conditions met or changed conditions over the time

Selected transit

- Transit connection is bought from provider which is not a candidate of future peering
Traffic Manipulation

- Force traffic to routes that make peering look attractive
 - After while initiate peering negotiations
 - Upstream traffic does not generate fast incentives

\[\text{AS#1} \quad \text{AS#2} \quad \text{AS#3} \quad \text{AS#4}\]

Peering

Transit

Preferred traffic

Forced traffic

Internet

- Local providers aim to minimize their expenses by interconnecting at local level
 - Local exchange points
 - CIX (Commercial Internet eXchange)
 - MAE (Metropolitan Area Exchange)
 - NAP (Network Access Point)
 - IXP (Internet eXchange Point)
 - EP (Exchange Point)
 - Bilateral interconnections

\[\text{ASI} \quad \text{AS#2} \quad \text{AS#3} \quad \text{AS#4}\]

Peering

Transit

Preferred route

Forced route

Traffic Manipulation

- Force traffic to routes that make peering look attractive
 - Stop advertising routes to cheap directions
 - Falsely inject AS#2 to path vectors in direction of AS#1
 - Loop detection prevents routes to be installed at AS#2

\[\text{AS#1} \quad \text{AS#2} \quad \text{AS#3} \quad \text{AS#4}\]

Peering

Transit

Preferred route

Forced route

Internet exchange

- Commercial starting point
 - A company builds an interconnection point to
 - Gain revenue from peering traffic
 - Gain revenue from transmission links coming to exchange
 - Gain revenue from transit traffic

- Co-operative starting point
 - Neutral partner runs the exchange
 - None of the partners owns the premises
 - None of the partners owns the transmission links into exchange
 - None of the partners owns the equipment in exchange
Internet exchange

- Build over L2 technology
 - Ethernet, ATM, FrameRelay switch
- Each provider connects into shared media with transmission link terminated to border router of provider
 - Everybody is able to see everybody

- Peering agreements can be based on
 - Multilateral agreements
 - Every partner is peering with every other partner
 - All border routers share a common subnet which is not filtered
 » Ideal situation for Ethernet type of IXP solution

- Bilateral agreements
 - Partners peer only based on bilateral agreements
 - Requires L2 technology that is able to create virtual connections between peering partners
 » ATM PVC
 » FR DLCI
 » Ethernet VLAN

- Multilateral peering requires either
 - Separate BGP session between each border router
 » N(N-1) sessions
 - IXP offers route server capabilities
 » Only N sessions
 - BGP-route reflector
Internet exchange

- Depending on operational philosophy of IXP
 - **Partners can make bilateral transit agreements in IXP**
 - Partners are already in same premises
 - Required separate virtual connections between transit provider and customer
 - **Partners can make QoS peering**
 - Several virtual connections between peers
 - One per VPN per QoS class
 - One per MPLS LSP
 - etc