

Lic.Tech. Marko Luoma (1/41)

S-38.3192 Verkkopalvelujen tuotanto S-38.3192 Network Service Provisioning

Lecture 7: VPN

Lic.Tech. Marko Luoma (3/41)

VPN

- Virtual
 - Network resources used are part of a common shared resource
- Private
 - Separate addressing and routing topological isolation
 - Flow of routing data is constrained to constrain the flow of user data
- Network
 - Devices that communicate through some arbitrary method
- GOAL: Restricted connectivity
 - Internet: Any to Any
 - VPN: Point to Point or Set to Set

Lic.Tech. Marko Luoma (2/41)

Virtual Private Network

VPN is

- A private network constructed over a shared public infrastructure
 - · ATM, FrameRelay, MPLS, IP
- One of several network realizations on the same infrastructure
 - · Each have their own routing policy

Lic.Tech. Marko Luoma (4/41)

Development Cycle

Lic.Tech. Marko Luoma (5/41)

Terminology

- Router Types
 - CE: Customer Edge Router
 - · Provides connection to the provider network
 - PE: Provider Edge Router
 - · Provider customer interface
 - · Terminates routing from both sides

- P: Provider Router

· Provider core routers which should not be aware of customers

TERNILLINEN KORKEAKOULU

Lic.Tech. Marko Luoma (7/41)

VPN Types

- Customer based
 - Routing and control at the CE
 - L2TP, PPTP, IPSec, GRE
- Provider based
 - Routing and control at the PE routers
 - MPLS, VPLS

Lic.Tech. Marko Luoma (6/41)

Terminology

- Site
 - Is a collection of networking devices that communicate together without traveling through provider network
 - Is mapped to PE router interface
 - · Separate routing table is associated for each site in PE router

- · VPN Routing and Fording Table
 - VRF stores site specific routes learned from
 - CE with any means
 - PE with MP-IBGP

Lic.Tech. Marko Luoma (8/41)

Customer Based VPNs

- PPTP/L2TP are typical ways to build L2 VPNs from dial-up connections to company resources
 - Operate on top of TCP (PPTP) or UDP (L2TP)

Lic.Tech. Marko Luoma (9/41)

Customer Based VPNs

- IPSec is used to create L3 VPNs between location whether end host or CPE device
 - Native support for strong encryption (company confidentiality)

Lic.Tech. Marko Luoma (11/41)

RFC 2547bis

- · Routed interconnection of VPN sites
- Multiprotocol BGP extensions are used to transfer routes through the core network
- Customers are separated to individual routing and forwarding tables
- Scalability is achieved by minimizing configuration
 - CE only knows interfacing PE
 - PE needs to know interfacing CE
 - P knows nothing about VPNs

Lic.Tech. Marko Luoma (10/41)

Provider Based VPNs

· L3 approach

- RFC 2547bis
- Provider delivers L3 access between PE routers of customer sites
- Customer locations are routed together using BGP as means to deliver labels and addressing information through the core

L2 approach

- Draft-martini, Draft-kompella
- VPLS
- Provider delivers L2 (Ethernet) access between
 PE routers of customer sites
- BGP of LDP is used to distribute labels between PE routers

Lic.Tech. Marko Luoma (12/41)

VPN-IPv4 NLRI

MP-BGP

- Multiprotocol extensions for BGP-4
- RFC 2283

NLRI: AFI:1 SAFI:128

- Mask
- MPLS label
- Route distinguisher
 - Disambiguates IPv4 addresses -> Controlled duplicates of addresses
- Subscriber IPv4 prefix

Mask Lab	туре Туре	Adm	AN	IP Address
----------	-----------	-----	----	------------

Lic.Tech. Marko Luoma (13/41)

VPN-IPv4 route distinguisher

- Type
 - 0:
 - Adm=AS number
 - AN=4 bytes (PE RID)
 - 1
 - Adm=4 bytes (PE RID)
 - · AN=Unique Number

- Administrator
 - Identifies the assigned number authority
 - AS -> PE RID
 - PE RID -> Unique Number
- Assigned Number

Type Adm AN IP A	Address
------------------	---------

Lic.Tech. Marko Luoma (15/41)

Distribution of routes

- Distribution of customer routes through provider network is based on BGP
 - IBGP between PE routers of different customer sites
 - · Full mesh of PE routers
 - All VPN routes are sent to every other PE
 - Scalability concerns
 - » IBGP peering
 - » Storing of routes and VPN-C Site 1

Lic.Tech. Marko Luoma (14/41)

VPN-IPv4 Addresses

- These extended addresses appear only in control plane of PE routers
 - Route distinguisher points into a VRF where particular address should be stored for packet delivery
 - Same address can safely co-exist in two different VRFs due to full isolation between them
 - (Logical) interfaces are bound into VRFs

Lic.Tech. Marko Luoma (16/41)

Distribution of routes

- Route target is a BGP extended community attribute which can be used to filter routes coming from IBGP sessions
 - Identifies a set of VRFs to which a PE router wishes to distribute routes
 - Same format options as in route distinguisher
 - ASN:IPv4 Address
 - IPv4 Address:Unique Number

Lic.Tech. Marko Luoma (17/41)

Distribution of routes

- Route reflectors can be used to alleviate peering constraints in IBGP sessions
 - PE routers send their VPN routes to RR which stores them into VPN table
 - PE's receive all routes of other PE's
 - PE's can ask routes with certain target
 - Route target filtering (RTF)

Lic.Tech. Marko Luoma (19/41)

Route Target Filtering

- · Route target filtering uses an separate NLRI format
 - AFI:1 SAFI:132
 - · Prefix limit
 - Maximum number of RT advertisements that can be reiceived

Lic.Tech. Marko Luoma (18/41)

Distribution of routes

- · Route reflector need not to be PE router as it does not have VRF tables
 - Routes from individual VRFs are stored in a single BGP routing table
 - BGP refresh capability is used to retrieve routes on non disruptive manner from the RR
 - An LSP is required from RR to every PE
 - BGP next-hop needs to be resolvable from the RR in order to make route usable

Lic.Tech. Marko Luoma (20/41)

MPLS LSP

 LSP between PE-1 and PE-2 is set up for tunneling VPN packets through the provider core

Lic.Tech. Marko Luoma (21/41)

PE-PE

- MP-IBGP session between PE routers is established
 - LSP between PE routers is required to resolve BGP next-hop

Exchange of routing information

• CE-1 sends a BGP update to PE-1

Lic.Tech. Marko Luoma (22/41)

CE-PE Communication

- BGP is native choice between two different administrative domains
- · IGPs (RIP, OSPF, IS-IS) could also be used
 - Separate routing process needs to be run for each customer
 - Separation of customer and provider routing

Lic.Tech. Marko Luoma (24/41)

Exchange of routing information

 PE-1 checks that it has BGP-next hop in IGP and install routes in correct VRF

Lic.Tech. Marko Luoma (25/41)

Exchange of routing information

PE-1 sends a MP-IBGP update to peers (PE-2)

Lic.Tech. Marko Luoma (27/41)

Exchange of routing information

PE-2 generates an BGP update for CE-3

Lic.Tech. Marko Luoma (26/41)

Exchange of routing information

PE-2 checks for proper import filter (route target) and installs routes to

Lic.Tech. Marko Luoma (28/41)

Exchange of routing information

 CE-3 checks from IGP validity of BGP-next hop and installs routes to PIR

Lic.Tech. Marko Luoma (29/41)

Dataflow

Lic.Tech. Marko Luoma (31/41)

I 2VPN NI RI

- · Length of the NLRI
- · Route Distinguisher
- Site ID (Identifies the CE)
 - Unique ID withing VPN
- Label Base
 - First label in label range
- · Label Block Offset
 - If multiple label blocks are used defines the offset from the base label

- · Circuit Status
 - Signals the L2 status of PE-CE link to the other end of the link
 - Simultaneous carrier loss at both ends
 - L2 detection for OSPF
 - Also carries Label range value

Length Type Adm AN	Site ID Offset	Label Base C	Circuit Status
--------------------	----------------	--------------	----------------

Lic.Tech. Marko Luoma (30/41)

L2 MPLS VPN

- PE router maps circuit IDs (VLAN ID, FrameRelay DLCI, ATM VPI/VCI) to label
- Decouple of customer facing technology from core technology
- Simplify provisioning of customer services
- Each site has own circuit from CE to PE
- Interconnection happens at Ces (routing)
- Draft-Martini
 - Communication between PE routers is based on LDP
- Draft-Kompella
 - Communication between PE routers is based on BGP

Lic.Tech. Marko Luoma (32/41)

L2VPN VFT

- · Route Target
 - Community for forming L2 VPN
- Site ID
 - Unique ID withing VPN
- Label Range
 - Number of possible peer CE
- Label Base
 - First label in label range

- Sub-int ID:Label pairs
 - Sub-interfaces in PE/CE to handle connections to different sites
 - Labels are assigned by PE based on
 - Label base
 - · Label range
 - Remote-site-ID
 - Auto assignement

Lic.Tech. Marko Luoma (33/41)

L2 MPLS VPN

- PE maps incoming packets based connection ID's to LSP having label stack dependent on remote-site-ID and MPLS connection label
 - As in L3VPN case

Terminology

- Router Types
 - CE: Customer Edge Device
 - · Router or Ethernet bridge
 - PE: Provider Edge Router
 - There can also be uPE which is L2 aggregation device in front of PE
 - · Also called VE device
 - Perform MAC address learning
 - Contains VPN forwarding table (VFT)

- P: Provider Router
 - Provider core routers which should not be aware of customers

Lic.Tech. Marko Luoma (34/41)

Virtual Private LAN Service

- The idea behind VPLS is to map provider infrastructure to a virtual bridge
 - Remember the idea from Carrier Grade Ethernet -lecture
 - · E-LAN service, where network looks like a distributed bridge
 - VPLS is a method for provider to offer CGE type of E-LAN service
- · Two versions:
 - BGP based by Kireeti Kompella (Juniper)
 - · Some scalability benefits over the other
 - LDP based by Vach Kompella (Alcatel)

Lic.Tech. Marko Luoma (36/41)

CE

- · CE is in major role in VPLS
 - CE's form direct relationship as if there is no provider network in between
 - · IP routing adjacency
 - · Ethernet spanning tree adjacency
 - Same L2 configuration on all sites
 - VLAN ID

Lic.Tech. Marko Luoma (37/41)

uPE PE

- · Provider edge devices are the ones which are aware of VPLS service
 - uPE does L2 aggregation in front of PE router
 - Economics of law: interfaces at L2 device are much cheaper than on the L3 device

Lic.Tech. Marko Luoma (39/41)

VFT

- Route Target
 - Community for forming VPLS
- Site ID
 - Unique ID withing VPLS
- · Label Range
 - Number of possible peer CE
- Label Base
 - First label in label range
- Offset

- · Remote site:Label pairs
 - Other possible sites and labels that are used to communicate with peers
 - · Populated with MP-IBGP

Lic.Tech. Marko Luoma (38/41)

VFT / VCT

- · VFT contains
 - Local VCT
 - · Local site ID
 - Site's Layer 2 encapsulation (Ethernet, VLAN, etc)
 - · Logical interfaces provisioned to the local CE
 - Label base used to associate received traffic with one of the logical interfaces
 - VCT from other PE
 - Site ID (VE ID)
 - Label

Lic.Tech. Marko Luoma (40/41)

VPLS NLRI

No circuit staty

- · Similar to L2VPN NLRI
- AFI (1), SAFI 65
- VE ID <-> Site ID
- · VE Block Offset <-> Label offset
- VE Block Size <-> Label range
- · Label Base <-> Label base

Length	Туре	Adm	AN	VE ID	VE Block Offset	VE Block Size	Label Base	
--------	------	-----	----	-------	--------------------	------------------	------------	--

Lic.Tech. Marko Luoma (41/41)

L2 Extended Community

Flags

- MBZ: 6 zeros

- C: Control word required

- S: Sequencing required

- Community type
 - L2 Information
- Encapsulation Type
 - 19: VPLS
- MTU
 - - Single LAN emulation

- All sites must use same MTU

Com Type	Encap Type	Flags	L2 MTU	Reserved