

Lic.(Tech.) Marko Luoma (1/49)

Lic.(Tech.) Marko Luoma (2/49)

Metropolitan Area Network

- · MANs are build to connect urban locations with a high bandwidths
- Requires high bandwidth technologies with intermediate range passive components
 - Usually based to
 - Optical fibers
 - Single mode
 - Radio
 - LMDS, MMDS, WIMAX

S-38.3192 Verkkopalvelujen tuotanto S-38.3192 Network Service Provisioning

Lecture 2: Core and Metro Network Technologies

Lic.(Tech.) Marko Luoma (3/49)

Core Network

- Connects MAN networks together
- Requires high bandwidth technologies with long range passive operation
 - Transmission speed and distance without repeaters tend to be inversely proportional
 - 1Gbps Ethernet -> 80-150km in SM-fiber with ZX-transmitter
 - 10Gbps Ethernet -> 10-40km in SM-fiber with ZX-transmitter
- Typical medias are
 - Fiber (Single Mode)
 - Radio (Microwave, Satellite)

Lic.(Tech.) Marko Luoma (4/49)

Technologies

High bandwidth requirements

- Transmission speeds are jumping up with constant rate
 - 1995: 155Mbps (SDH/ATM)
 - 2000: 2.4Gps (SDH)2004: 10 Gbps
 - (SDH/Ethernet)
 - 2000-2004 wavelength technologies brought a new means to increase capacity
 - DWDM
 - CWDM

Frame based multiplexing

- Irrespective of low layer functionality
- Fiber/Radio
- Options today are
 - GMPLS
 - SDH
 - ATM
 - EthernetGFP
- 011
- RPR

Lic.(Tech.) Marko Luoma (5/49)

- EoS Ethernet over SDH (Proprietary) PoS Packet over SDH
- RPR Resilient Packet Rings (IEEE 802.17) GFP Generic Framing Procedure

Lic.(Tech.) Marko Luoma (7/49)

WDM

- Effectively N fold increase of transmission capacity from the same fiber infrastructure
 - Wide band components are relatively more expensive than N times narrow band components
 - Individual lambdas can be used independently
 - Usage depends on transponder unit
 - Framing is in general from SDH (interface may be what ever)
 - » STM-16 2.4Gbps
 - » STM-64 10 Gbps = 10GbE
 - » STM-256 40 Gbps = 40GbE

Lic.(Tech.) Marko Luoma (6/49)

WDM

Optical counterpart for Frequency Division Multiplexing

WDM

Lic.(Tech.) Marko Luoma (8/49)

WDM

- Two operative versions
 - CWDM Coarse Wavelength Division Multiplexing
 - Typically 8 channels between (1470 1610nm with 20nm steps)
 - DWDM Dense Wavelength Division Multiplexing
 - ITU Grid (100 Ghz resolution)
 - 50 channels between 1569.80nm to 1611.79nn
 - 50 channels between 1529.75nm to 1569.59nm
 - 50 channels between 1491.69nm to 1529.55nm

Lic.(Tech.) Marko Luoma (9/49)

WDM

- DWDM
 - Narrow channel
 - Components need to be compensated for temperature effects
 - Expensive
 - More channels to choose from
 nonlinearities of fibers can be avoided by selecting proper wavelengths
- CWDM
 - Wide channel
 - Component requirements are looser
 - Cheaper lasers and
 - receivers
 - Less channels
 - Not suitable for long-haul networks
 Suitable for MAN
 - Suitable for MANs

TEKNILLINEN KORKENKOULU Tistorehis biberateis

Lic.(Tech.) Marko Luoma (10/49)

WDM

- Can be used as link or network technology
 - Link technology
 - · Multiplexers at the ends of the links
 - Network technology
 - Optical switching components
 - Optical delay lines
 - Wavelength conversion
 - Photonic switching

Lic.(Tech.) Marko Luoma (11/49)

WDM

- Pros:
 - Protocol independent
 - Virtual fiber
 - Multiplexing different traffic through different wavelengths
- Cons:
 - Depending on system pay as you go may not be possible
 - The number of required channels need to be estimated for the lifetime of systems
 - Filters are designed for certain amount of wavelengths and spacing

Lic.(Tech.) Marko Luoma (12/49)

Frame Multiplexing

Synchronous multiplexing • Fixed usage of resources

D C B A D C B A D C B A D C B A A D C B A

Asynchronous multiplexing • Free usage of resources

Lic.(Tech.) Marko Luoma (13/49)

Frame Multiplexing

- Synchronous
 - Fixed usage of resources
 - Information does not need L2 addresses
 - Wastes resources if communication is not CBR
 - Easy to integrate
 - SDH

- Asynchronous
 - Free usage of resources
 - Information requires L2 addresses
 - Does not waste resources
 - Requires additional logics to control resource usage
 - ATM, Ethernet

Lic.(Tech.) Marko Luoma (14/49)

SDH

- Synchronous frame based multiplexing of transmitted signals – Link framing is done with 2430 byte frames
 - Generation interval is 125us -> reflects the original coding of speech with 8kHz sampling rate
 - Datarate = 155,52Mbps

Lic.(Tech.) Marko Luoma (15/49)

- SDH
- Link frames contain virtual containers which carry the actual information
 - Header information (POH)
 - Flow and error control information between edge devices
 - Content
 - Virtual containers form point-to-point permanent connections through SDH network

Lic.(Tech.) Marko Luoma (16/49)

SDH

- SDH hierarchy makes possible to use multiples and fractions of basic rate
 - Multiples are generated by injecting multiple (factor of four) link frames within time-slot
 - STM-1: 155.52 Mbit/s (basic rate)
 - STM-4: 622.08 Mbit/s (first multiplex)
 - STM-16: 2488.32 Mbit/s (second multiplex)
 - STM-64: 9953.28 Mbit/s (third multiplex)
 - Operation is byte synchronous
 - Timing of individual bytes in multiplex is same than in basic rate frame

container (routed separately within SDH network)

Lic.(Tech.) Marko Luoma (17/49)

SDH

- Fractions are generated by multiplexing different streams of content into individual frame
 - Several virtual containers destined to same or different points in network

Lic.(Tech.) Marko Luoma (18/49)

SDH

- SDH supports also concatenation of resources
 - Old version strict mode
 - Clear channel operation (small 'c' after the virtual container type)
 - All VC:s in different frames form a single bit stream
 - Not feasible in SDH networks
 - Feasible if SDH is used as a point to point link technology
 - New version flexible mode
 - Concatenation is used only in edge devices
 - Supports SDH networks
 - Concatenated VC:s need not be with same speeds
 » Even over different fibers

Lic.(Tech.) Marko Luoma (25/49)

ATM

Lic.(Tech.) Marko Luoma (26/49)

ATM

- Can be used
 - As is over the transmission media
 - · Assumes low bit error ratio from the media
 - Over any other L2 protocol
 - Benefits from the error control of L2 media
- · Why sensitivity to BER
 - Packet has not markers
 - Delineation is accomplished through state-machine which goes through packet bit by bit and looks header checksum matches

 Sensitive to errors if high BER

Lic.(Tech.) Marko Luoma (27/49)

ATM

- 48 byte content field is too big for voice communications
 - Separate protocol layers to handle
 - Sub cell delineation
 - Timing
 - Sequencing
 - Clear channel communication for video applications

TENHLINEN KORKENKOULU

Lic.(Tech.) Marko Luoma (28/49)

ATM

- 48 byte content field is too little for data networks
 - Fragmentation of data packets into multiple ATM cells
 - Separate protocol layer to handle the fragmentation and reassembly of protocol packets

Lic.(Tech.) Marko Luoma (29/49)

ATM

- Framing options for IP traffic in ATM links:
 - RFC2684: Multiprotocol Encapsulation over ATM Adaptation Layer 5 (Classical IP)
 - Uses LLC/SNAP encapsulation of traffic within ATM adaption layer 5

Destination SAP = AA	AA-AA-03 -> SNAP
Source SAP = AA	
Frame Type =03	
OUI =00-00-00	00-00-00 -> Ethertype
Ethertype =08-00	08-00 -> IPv4
IP packet	
PAD (0-47 octect)	
CPCS-UU (1 octect)	AAL5 -trailer
CPI (1 octect) =0x00	
Length (2 octect)	
CRC (4 octect)	

Lic.(Tech.) Marko Luoma (30/49)

ATM

- Framing options for IP traffic in ATM links:
 - RFC2364: Point to Point Protocol over ATM
 - Uses in AAL5 frames either
 - raw PPP packets
 - PPP on LLC/NLPID

- Large number of connections and adjacencies in routing
- Usually subinterface per connection

- Additional layer of technology
 - Not good for framing itself
- Expensive interfaces at routers
 - Subinterface structure in networked ATM

Lic.(Tech.) Marko Luoma (33/49)

Ethernet

- Technology has scaled to level where conventional core network technologies are
 - STM-64 and 10GbE are the same
 - Even in optical interface level they are the same but ethernet is only 20% of the price
 - STM-256 will be the base for 40GbE
 - 1GbE is based on fiber channel but can be multiplexed in STM-16 networks by having two independent connections

Lic.(Tech.) Marko Luoma (34/49)

Ethernet

- 10GbE
 - IEEE 802.3ae
 - Full duplex
 - Adjustable MAC speed
 - 10Gb in LAN
 - 9.29Gb in WAN
 - Optical media
 - SDH WAN Phy
 - 10Gb LAN Phy

- 1GbE
 - 802.3z
 - CSMA/CD + Full Duplex
 - Optical and copper media
 - Fiber channel Phy

Lic.(Tech.) Marko Luoma (37/49)

Ethernet

- Differencies in framing and error recovery lower the price of Ethernet interfaces compared the same rate PoS interfaces
 - OC-192 <-> STM-64
 - OC-48 <-> STM-16

Source: http://www.foundrynet.com/

TEKNILLINEN KORKENKOULU Tistovela blevasta

Lic.(Tech.) Marko Luoma (38/49)

Ethernet

- Pros:
 - Optimized for burst data services
 - No protocol conversion for interfacing with routers and LAN switches
 - Plug-and-play ideology in operation
- Cons:
 - Expensive and complicated to support the TDM voice and leased line services
 - Poor in trouble isolation and network recovery
 - Spanning tree operation takes tens of seconds to recover the networks
 - IEEE802.17 (Resilient Packet Ring) and BFD (Bi-directional Forwarding Detection) will eventually help this

Lic.(Tech.) Marko Luoma (39/49)

Carrier Grade Ethernet

- Also known as Metro Ethernet (interest group called: Metro Ethernet Forum)
 - Technology perspective
 - · Customer side: semi-transparent Ethernet
 - Provider side: SDH, VPLS, Q-in-Q etc
 - Service definitions
 - Ethernet line (E-LINE)
 - point-to-point
 - Ethernet LAN (E-LAN)
 - multipoint- to-multipoint

Lic.(Tech.) Marko Luoma (40/49)

Perspective

- · Ethernet is true service delivery layer
 - IP is artificially brought to the middle while in many cases it is not even wanted

Enabled Service over Ethernet	Storage	Internet Access	IP VPN	CESoE	IP Telephony	Video on Demand
Ethernet Connectivity Service	E-Line and E-LAN (Virtual and Private, MAN and WAN)					
Service Delivery Technology	Ethernet over Fiber	Ethern ove SONET/	net r SDH	Ethernet over RPR	Ethernet over MPLS	Ethernet over WDM

Lic.(Tech.) Marko Luoma (41/49)

Major changes

- Service concept
 - E-LAN and E-Line
- Connection orientation
 - Ethernet Virtual Connection (EVC)
 - Filter word for distinguishing packets from different connections
- QoS
 - SLA is required for large scale deployment within corporate interconnections
 - Bandwidth control
 - Committed information rate control (inherited form FrameRelay)

Lic.(Tech.) Marko Luoma (42/49)

E-Line and E-LAN Services

- E-Line Service used to create
 - Private Line Services
 - Ethernet Internet Access
 - Point-to-Point VPNs

E-LAN Service used to

- Transparent LAN Service

- Multipoint VPNs

E-LAN Service typ

Point in Point

Stauson Metro Ethernel Forum

٠

create

Lic.(Tech.) Marko Luoma (43/49)

Service Attribute	Service Attribute Parameters
EVC Type	Point-to-Point or Multipoint-to-Multipoint
UNI List	A list of UNIs (identified via the UNI Identifier service attribute) used with the \ensuremath{EVC}
CE-VLAN ID Preservation	Yes or No. Specifies whether customer VLAN ID is preserved or not.
CE-VLAN CoS Preservation	Yes or No. Specifies whether customer VLAN CoS (802.1p) is preserved or not.
Unicast Service Frame Delivery	Specifies whether unicast frames are Discarded, Delivered Unconditionally or Delivered Conditionally
Multicast Service Frame Delivery	Specifies whether multicast frames are Discarded, Delivered Unconditionally or Delivered Conditionally
Broadcast Service Frame Delivery	Specifies whether broadcast frames are Discarded, Delivered Unconditionally or Delivered Conditionally
Layer 2 Control Protocol Processing	Discard or Tunnel per protocol
Service Performance	Specifies the Frame Delay, Frame Jitter and Frame Loss per EVC or frames within an EVC identified via their CE-VLAN CoS (802.1p) value

Source: Metro Ethernet Forum

TERMILLINEN KORKEMOOULU Tietovella laberateria

Lic.(Tech.) Marko Luoma (44/49)

Service Attribute	Service Attribute Parameters
UNI Identifier	A string used to identity of a UNI, e.g., NYCBldg12Rm102Slot22Port3
Physical Medium	Standard Ethernet PHY
Speed	10 Mbps, 100 Mbps, 1 Gbps or 10 Gbps
Mode	Full Duplex or Auto negotiation
MAC Layer	IEEE 802.3-2002
Service Multiplexing	Yes or No. Defines whether multiple services can be on the UNI
UNI EVC ID	A string used identify an EVC, e.g., NYCBldg1Rm102Slot22Port3EVC3
CE-VLAN ID / EVC Map	Mapping table of customer VLAN IDs to EVC
Max. Number of EVCs	The maximum number of EVCs allowed per UNI
Bundling	No or Yes. Specifies that one or more customer VLAN IDs are mapped to an EVC at the UNI
All to One Bundling	No or Yes (all customer VLAN IDs are mapped to an EVC at the UNI).
Ingress Bandwidth Profile Per Ingress UNI	None or <cir, cbs,="" ebs="" eir,="">. This Bandwidth profile applies to all frames across the UNI.</cir,>
Ingress Bandwidth Profile Per EVC	None or <cir, cbs,="" ebs="" eir,="">. This Bandwidth profile applies to all frames over particular EVC.</cir,>
Ingress Bandwidth Profile Per CoS ID	None or <cir, cbs,="" ebs="" eir,="">. This Bandwidth profile applies to all frames marked with a particular CoS ID over an EVC.</cir,>
Layer 2 Control Protocol Processing	Discard, Peer or Pass to EVC per protocol

Source: Metro Ethernet Forum

Lic.(Tech.) Marko Luoma (49/49)

CGE and IP

- IP networks are collapsed in to two layers
 - Residential customer concentration routers
 - Integrated in DSLAM
 - Border routers
 - For address propagation and policy control
- IP aggregation is vanishing

 Ethernet aggregation is taking the role of the true transport
 - Even in 3G networks
 - Look for latest ITU drafts for Ethernet aggregation in 3G networks