

Lic.Tech. Marko Luoma (1/42)

Lic.Tech. Marko Luoma (2/42)

Subscriber line technology

- · Subscriber line is the last mile to the customer
 - Customer can be
 - Residential user
 - Typically economically constrained technologies
 - Corporation
 - SME:s operate with tight budget technologies are similar to residential users
 - Large corporations business in tightly bound to networks
 » <u>Readiness to invest and use money</u> for better (more reliable) services

Lic.Tech. Marko Luoma (3/42)

Subscriber line technology

S-38.3192 Verkkopalvelujen tuotanto

S-38.3192 Network Service Provisioning

Lecture 1: Subscriber line technologies

- Subscriber line is the last mile to the customer
 - Conventionally only PSTN subscriber lines
 - Twisted pair copper
 - One or several pairs to each house
 - In urban areas CATV subscriber lines provide same service
 - Hybrid fiber coax network
 - Power lines are the last to arrive to the scene
 - · Power lines are used to transmit also data traffic
 - Conventionally only control messages to fusebox
- Subscriber lines are the most expensive part of the network
 - A lot of physical construction work for each customer

Lic.Tech. Marko Luoma (4/42)

Subscriber line technology

- · Technology options for broadband data connections are
 - PDH/SDH/ATM
 - Long Range Ethernet (LRE)
 - XDSL over PSTN subscriber lines
 - DOCSIS over CATV lines
 - Power line communication (PLC)
 - Wireless local loops
 - 802.11 WLAN / HiperLAN
 - 802.16 WiMax

Lic.Tech. Marko Luoma (5/42)

xDSL

• XDSL is a digitalizion of subscriber line

- IDSL (ISDN Digital Subscriber Line) was the initial invention
 - Local loop was digitized with high reliability and low bit error rate
- Both ends of the subscriber line is equipped with modems
 - Information is modulated to frequency range that best serves the communication
 - PSTN copper pairs are in general old and contain a lot nonlinearities
 - » Joints made with variable mechanisms
 - » Irregular twisting of pairs
 - » Highly variable di-electric properties of insulations
 - » Optimized for frequency range below 4kHz

Lic.Tech. Marko Luoma (6/42)

xDSL

- · Non-linearities cause a lot of problems in high data rate communications
 - Attenuation
 - Crosstalk
- Distortion
- Magnitude depends on frequency and other usage of copper infrastructure
 - Copper pairs do not run individually on the ground ;-)

Lic.Tech. Marko Luoma (7/42)

Remote Modem

- Transceiver Unit Remote (xTU-R)
 - Subscriber network termination
 - Either
 - Separate active device (bridge, router)
 - NIĊ in PC
 - With certain technologies can be equipped with low pass filter to extract voice signal (analog)from data.

Lic.Tech. Marko Luoma (8/42)

Central Office Modem

- Transceiver Unit Central Office
 - Core network termination
 - Counterpart for user side mode
 - Usually build into larger unit (DSLAM)
 - Several modems
 - Multiplexing unit which concentrates the traffic into high speed backbone link
 - ATM 155 ATM 622
 - Gigabit ethernet

Lic.Tech. Marko Luoma (9/42)

HDSL

- HDSL (High Bit-Rate Digital Subscriber Line)
 - First real xDSL-technique
 - Baseband operation (2B1Q)
 - · Subscriber line cannot be used same time for POTS services
 - Symmetric operation
 - Suitable for corporate LAN interconnection
 - PBX subscriber lines
 - Part of the time-slots can be left out of usage
 - Uses multiple copper pairs
 - Two pairs 1.5Mbps (T1)
 - Three pairs 2Mbps (E1)
 - Maximum distance 3-4 km

Lic.Tech. Marko Luoma (11/42)

G.SHDSL

- **G.SHDSL** (Symmetric High Bit-Rate Digital Subscriber Line)
 - ITU-T Recommendation G.991.2
 - T1E1 HDSL2
 - ETSI SDSL
 - Transmission rates 192 kbps 2.312 Mbps
 - Coding 16-Level TC-PAM (Trellis Coded Pulse Amplitude Modulation)
 - Single copper pair technology
 - Information is framed based on various technologies:
 - ATM
 - TDM
 - IP
 - Ethernet

Lic.Tech. Marko Luoma (10/42)

SDSL

- SDSL (Single-Line Digital Subscriber Line)
 - Single copper pair version of HDSL
 - Uses same modulation (2B1Q)
 - · Transmission rates are same as in HDSL
 - More popular than HDSL
 - · Copper pairs are expensive to rent in urban area
 - Maximum distance 3 km

Lic.Tech. Marko Luoma (12/42)

ADSL

- ADSL (Asymmetric Digital Subscriber Line)
 - Most popular xDSL technique (residential user oriented)
 - Asymmetric uplink and downlink
 - Three bands
 - 0-3400Hz POTS
 - 20-160kHz Bidirectional data band
 - 240-1100kHz downlink data band
 - Bands are divided into 256 carriers
 - · Carriers can be activated and passivated
 - Downlink maximum rate 1.5-8Mbps
 - Uplink maximum rate 1.5 Mbps
 - Maximum distance 3-4 km

Lic.Tech. Marko Luoma (13/42)

ADSL

- ADSL systems measure the quality of copper pair and adapt symbol rate
 in each carrier to compensate possible defects
 - Crosstalk
 - Bit error rate
 - Attenuation

Lic.Tech. Marko Luoma (15/42)

XDSL Framing (ATM)

- RFC2684: Multiprotocol Encapsulation over ATM Adaptation Layer 5
- RFC2364: Point to Point Protocol over ATM
- RFC 2516: A Method for Transmitting PPP Over Ethernet (PPPoE)
- Point to Point Protocol over Ethernet over ATM

Lic.Tech. Marko Luoma (14/42)

XDSL Framing

- XDSL systems are typically build for data transmission
- Data is transmitted between
 - Residential subscriber and ISP (Internet)
 - Residential subscriber and corporate network (Intranet)
 - Corporate offices (LAN interconnection)
- · In all cases subscriber can be operated as
 - <u>Routed</u>
 - Subscriber has its own subnet
 - Bridged
 - · Several subscribers share one subnet

Lic.Tech. Marko Luoma (16/42)

RFC 2684

RFC 2684: Multiprotocol Encapsulation over ATM Adaptation Layer 5
 Previous version RFC 1483 (Classical IP)

Lic.Tech. Marko Luoma (17/42)

RFC2684

- Two modes
 - VC-multiplexing
 - No framing -> individual ATM PVC can be used only for transmitting one type information
 - Both ends of the connection must share common view of the structure of information
 - Efficient
 - LLC-encapsulation

Subnet A

 IEEE 802.2 encapsulation is added to information -> contains pointer to data type

Lic.Tech. Marko Luoma (18/42)

RFC 2684

- VC-multiplexing is based on raw ATM AAL5:n CPCS-interface
 - Routed protocols are interleaved directly in to CPCS-PDU
 - Bridged protocols require destination MAC-address for delivery

CPCS-PDU	
PAD (0-47 octet)	
CPCS-UU (1 octet)	
CPI (1 octet) = 0x00	
Length (2 octet)	
CRC (4 octet)	

PAD =00-00
MAC Destination
MAC frame
LAN FCS (depends VC:)
PAD (0-47 octet)
CPCS-UU (1 octet)
CPI (1 octet) =0x00
Length (2 octet)
CRC (4 octet)

RFC 2684

- LLC-encapsulation
 - LLC header expresses frame type (protocol)
 - IP uses LLC/SNAP encapsulation

Routed protocols

Subnet B

Lic.Tech. Marko Luoma (21/42)

Bridged protocols

Lic.Tech. Marko Luoma (22/42)

RFC 2684

 Ethernet bridging uses same LLC/SNAP encapsulation as IP does

Lic.Tech. Marko Luoma (25/42)

(Euro) DOCSIS CATV Network

TENTELNEN KORKENSOULU

Lic.Tech. Marko Luoma (26/42)

(Euro) DOCSIS

- US
 - Frequency ranges
 - Uplink 5 42 MHz
 - Dowlink 50 750 MHz
 - 6 MHz video channels
- Europe

 Frequency ranges
 - Uplink 5 65 MHz
 - Downlink 50 860 MHz
 - 8 Mhz video channels

TENNELINEN KOIKKE AKOULU

Lic.Tech. Marko Luoma (27/42)

(Euro) DOCSIS

- · Architecture requires two different components
 - Cable modem (CM)
 - User device which modulates and demodulates the information to/from coax network
 - Ethernet interface for end-user
 - Cable modem termination system (CMTS)
 - Modem unit on CATV head-end or distribution hub
 - Controls the uplink channel usage
 - » Separate CMTS for each frequency that is used for DOCSIS
 - Modulates and demodulates the data to proper frequency

Lic.Tech. Marko Luoma (28/42)

(Euro) DOCSIS

- Framing is based on Ethernet framing but within the HFC network separate framing is used for data communication
 - Downlink: TDM based MPEG-2 frames
 - Uplink: TDMA based minislots

IEEE 802.2												
DOCSIS MAC												
TDMA MiniSlot	TDM MPEG											
5-65 MHz 8MHz Channels 🗸												
HFC												

Lic.Tech. Marko Luoma (29/42)

(Euro) DOCSIS

- Downlink framing based on MPEG-2
 - 204 bytes
 - Similar with video
 - Mix and match in single channel
 - Header contains info what frame content is
 - PID field 0x1FFE equals to MCNS Data over Cable
 - FEC is used to correct possible (probable) errors on transmission
 - Coax networks with multiple amplifiers are prone to bit errors
 - Reed Solomon coding

Lic.Tech. Marko Luoma (30/42)

(Euro) DOCSIS

- Uplink framing is based on timely division of link capacity for different subscribers
 - Similar than PDH
 - Individual time-slot 6.25 us
 - Amount of bytes depends on modulation and coding
 - Required amount of time-slots is requested from CMTS to send data
 - Length of sync field depends on physical transmission rate
 - Data is normal Ethernet frame

Sync	Header	Data	FEC
(x bytes)	(6 bytes)	(18-1518 bytes)	(x bytes)

Sync Header	Data FEC
(1 byte) (3 bytes)	84 bytes) (16 bytes)

Lic.Tech. Marko Luoma (31/42)

(Euro) DOCSIS

- CMTS controls the resource usage on uplink by allocating certain timeslots for certain CM:s
 - Done in granularities of MAP PDU
 - Several time-slots

Lic.Tech. Marko Luoma (32/42)

(Euro) DOCSIS

- Downlink (per CMTS channel)
 - 64-QAN: 38 Mbps
 - 256-QAM: 52 Mbps
- Uplink
 - Capacity depends on
 - Version of specification
 - · Modulation method
 - Symbol rate (channel size)

Previous ma	ар	C	urr	ent	ma	ıp																		F	or C	смт	S to ma	p nex	t
Time-Slots																													
Current map usage		Red	que	ests		(СМ	A			(СМ	в			_	СМ	С		Ма	int	ena	nce						

	DOCSIS 1.0 and 1.1											
Symbol Rate	Bandwidth	QPSK Data	16-QAM									
-	Used (KHz)	Rate (Kb/s)	Data Rate									
			(Kb/s)									
160	200	320	640									
320	400	640	1280									
640	800	1280	2560									
1280	1600	2560	5120									
2560	3200	5120	10240									

			DOCSIS 2.0			
Symbol Rate	QPSK (Kb/s)	8-QAM (Kb/s)	16-QAM (Kb/s)	32-QAM (Mb/s)	64-QAM (Mb/s)	128-QAM (Mb/s)
160	320	480	640	0.96	1.28	1.92
320	640	960	1280	1.92	2.56	3.84
640	1280	1920	2560	3.84	5.12	7.68
1280	2560	3840	5120	7.68	10.24	15.36
2560	5120	7680	10240	15.36	20.48	30.72
5120	10240	15360	20480	30.72	40.96	61.44

Lic.Tech. Marko Luoma (33/42)

Power Line Communications

- · Based on fact that majority of houses are connected power grid
 - Same cabling system can be used to transmit information other than 50Hz electricity
 - Modulation of data information to frequency range that operates in power network
 - Power line twisting
 - outdoors is optimized for low frequencies
 - Indoors is basically none
 - High frequencies
 - Power line operates as antenna
 - » Regulations to control the emissions

Lic.Tech. Marko Luoma (34/42)

PLC

- · Based on three components
 - Power line master unit
 - · Connects into power line after last transformer
 - Modem unit which handles the transmission on power line
 - Assigns turns for communication as in DOCSIS

Lic.Tech. Marko Luoma (37/42)

PLC

- Frequency range 1.6MHz to 30 Mhz
 - Several independent carriers (4-8 normally)
 - Overall datarate 8Mbps
 - Next generation will bring 16-40 Mbps (depending on source of estimation)
- Locally several power companies have tested technology but only few are really offering services based on it

TEXNELINEN KORKESKOUU

Lic.Tech. Marko Luoma (38/42)

Corporate connection models

- Subscriber line technologies for corporate usage are the same as for residential usage with the exception that conventional core network technologies are extended to customers:
 - Ethernet
 - Normal
 - LRE (Ethernet over VDSL/HDLC)
 - PDH
 - HDLC
 - Cisco HDLC
 PPP
 - PPF
 - FrameRelay

Lic.Tech. Marko Luoma (39/42)

HDLC

- · HDLC-protocol is a ISO standard protocol based on IBM SDLC-protocol
 - HDLC frame contains

Flag

- Markers for the frame (0x7E 0111110)
- Address field to indicate receiving station of the frame (128)

N*8+24 N*8+25

Data

N*8+56 N*8+57

Flag

FCS

Control field for indication of frame type

Control

24 25

- I: Information frame
- S: Supervisory frame
- U: Unnumbered frame

16 1

Adress

Lic.Tech. Marko Luoma (40/42)

Cisco HDLC

- Cisco HDLC is a HDLC variant intended for multiprotocol encapsulation over transmission link
 - Cisco HDLC adds
 - Protocol field for indicating the post processing option for the frame
 - Protocol field contains either
 - » Ethernet type codes
 - » Cisco add-ons indicating that content is Ethernet or its sub protocol

Lic.Tech. Marko Luoma (41/42)

PPP

- · Point-to-point protocol is standard variant of Cisco HDLC
 - Only two devices on the communication path
 - Address 0xFF (broadcast)
 - Control (0x03) for U-frames without flow control
 - PPP-frame itself contains protocol indication
 - Like cisco HDLC

Lic.Tech. Marko Luoma (42/42)

Frame Relay

- Popular variant of HDLC
- Omits the control field
 - Error and flow control are left for application protocols
- Restructured address field
- Address and control
 - integrated

- DLCI: Connection ID (10/16/23bits)
- xECN: congestion indication forward / backward
- DE: Discard eligible
- EA: Extended address
- C/R: Command Response

