Measurement analysis - II

Lecture slides for S-38.3183
21.3.2007
Mika Ilvesmäki

Contents

• Dependence statistics
 – cross-correlation
 – autocorrelation
• Time series analysis
 – stability
• Self-similarity
 – Hurst parameter
Goals of this lecture

- After this lecture you should know
 - What different correlation statistics there are
 - What different correlation statistics mean
 - And what things must be considered when evaluating different correlation statistics
 - Preliminary time series analysis
 - What self-similarity means and why it exists in the network
 - How self-similarity is evaluated
 - And how to calculate the Hurst parameter, in three different ways (requires reading “Chapter 2” also)

Dependence statistics

- Cross-correlation
 - Calculated between two series
 - May be evaluated with a delay
 - Results in correlation series
- Autocorrelation
 - Calculated within the series
 - Correlation series indicates dependence or periodicity (or lack thereof)
Correlation

• If two phenomena covary
 – They do it in a positive or negative sense
 • Or not at all
 – Covariation is always perceived (through measurements)
• Correlation does not imply causality!

Cross-correlation

• A standard method of estimating the degree to which two (different) series are (linearly) correlated
 – aka dot product,
• Normalized correlation coefficient that equals unity indicates perfect match
 – But gives no explanation why there is a perfect match.
Determining cross correlation

- Definition includes delay d (lag k...)
 - If sample index outside the series a) ignore b) assume zero c) wrap around (preferred)
 - Delay may be significantly less than series length N to test for short delay correlation only
 - If you find correlation with certain d it is an indication of a correlating phenomena with a time delay.
 - When two random processes (x and y) are statistically independent then the R_{xy} and R_{yx} are equal.
 - Hint: Always plot the original signals together with cross-correlation with varying lag (d)

Properties of cross correlation

- High correlation likely indicates periodicity
- Correlation does not indicate any physical relation and correlation is indicated only based on the samples
Auto-correlation

- Observations on the signal should be equally spaced (in time or in space)
- Correlation between values of the same variable at different times (lagged signal)
 - A high correlation is likely to indicate a periodicity in the signal of the corresponding time duration.
 - The autocorrelation of a periodic function is, itself, periodic with the very same period.
- Auto-correlation with zero lag will always result in unity (perfect match)
 - Usually, as lag increases the auto-correlation value will decrease
- Used to detect non-randomness in data
- Auto-correlation with varying lag
 - Indicates the persistence (memory) of the process

Properties of auto-correlation

- Properties of auto-correlation
 - How quickly random signal or processes change with respect to the time function
 - Whether process has a periodic component and what the expected frequency might be
 - The autocorrelation of a white noise signal will have a strong peak at $d = 0$ and will be close to 0 for all other d.
 - This shows that a sampled instance of a white noise signal is not statistically correlated to a sample instance of the same white noise signal at another time.
Time (or space) series

• Measured events occur in time (or in space)
 • Collect the timestamp (location) of the event in evenly spaced timeslots.
 • Repeat, and you have yourself a timeseries
• Useful for determining the amount of data on a link
 – Arrived data or packets/Time window
• Useful for detecting the start and end of a phenomena

Purpose of Time series analysis

• Time series analysis aims to:
 – identify the nature of the phenomenon represented by the observations
 – predict future values of the time series.
• Time series analysis ables us to extrapolate the identified pattern to predict future events
 – This does not depend up on our understanding of the underlying phenomena and/or the validity of our interpretation (theory) of the phenomenon
Procedure for time series analysis

- It is assumed that the data consist of a systematic pattern and random noise which usually makes the pattern difficult to identify.
- Is time series stable?
 - First question: Is it (the distribution) heavy tailed?
 - Process in three steps
 - Graph the series (x-axis time, y-axis event)
 - Periodicity, outliers, determine also basic statistics
 - Do histogram of the series
 - Lose temporal structure, gain info on symmetry
 - Do the converging variance test
 - Plot S_n^2 for the first n observations as a function of n. If data has finite variance, the sample variance should converge to a finite value.

Self-similarity

- Self-similar phenomenon looks the same when viewed at different scales of a dimension
 - Time: μs, ms, s, min, h, a etc.
 - Space: μm, mm, cm, m, km etc.
- Typically self-similarity of a phenomena means that there are non-negligible correlations between the event counts in far apart spaced observations (time, space)
Definition of self-similarity

• Self-similarity of a time series:
 – when aggregated…
 • (leading to a shorter time series in which each point is the sum of multiple original points)
 – the new series has the same autocorrelation function as the original…
 – and the series is distributionally self-similar.

Self-similarity

• Long-range dependence
 – A process with long-range dependence has an autocorrelation function \(r(k) \sim k^\beta \) as the lag \(k \to \infty \) and \(0 < \beta < 1 \)
 – Therefore the \(r(k) \) of such process decays hyperbolically
 • Poisson traffic decays exponentially
 • Hyperbolic decay is much slower than exponential decay
 • Since \(\beta < 1 \), the sum of autocorrelation values approaches infinity
 – The parameter that is usually (for historic reasons) used to indicate the speed of decay of the series’ autocorrelation function is the Hurst parameter
 • \(H = 1 - \beta / 2 \) and therefore \(1 / 2 < H < 1 \). As \(H \) approaches unity, the degree of self-similarity increases.
 • Simplified: To test self-similarity of a series: Is \(H \) significantly different from \(1 / 2 \)?
Hurst parameter

- There are several theoretically sound estimators for Hurst parameter
- However, they may disagree when applied to same data
- Differing views on how to preprocess data
 - At least aim to
 - remove mean,
 - trends,
 - best polynomial fit (of high order, like 10)

Hurst parameter: Variance-time

- Variance-time relation
 - Calculate the variance of series as you take more and more of the series into the calculation
 - Plot variance-time relation
 - Log-log plot
 - A straight line with slope $-\beta>-1$ indicates self-similarity
- Estimation is made in time-domain
Hurst parameter: R/S-method

- **R/S: Rescaled Range**
 - Relies on rescaled range (R/S) statistic growing like a power law with H as a function of number of points n plotted.
 - The plot of R/S versus n on log-log has slope which estimates H.
 - Process:
 - Divide a timeseries into K non-overlapping blocks, blocks vary from 1…n
 - Compute $R/S(n)$, the rescaled adjusted range for all n.
 - R is the range of the data in the block n, S is the sample variance of the data in the same block.
 - The R/S values plotted against n should have n^H relation.
 - In log-log space the slope of the R/S vs. n –line is H.
- Estimation is made in time-domain.

Hurst parameter: Periodograms

- **Fact: Spectral density of self-similar processes obeys power law near the origin**
 - The slope of the power spectrum of the series as frequency approaches zero (and is near origin).
 - The periodogram slope (in a log-log plot) is a straight line with slope $1-2H$ close to the origin (10% of the lowest frequencies).
- Estimation made in frequency domain.
Other methods for estimating H

- Analysing wavelets
 - Generalized Fourier-transform
- Whittle estimator focuses on making observations near zero frequency
- Both of these methods are in the frequency domain
 - And all of these are dealt with in advanced courses 😊

Meaning of self-similarity

- A high value of Hurst parameter often increases delays and packet loss in a network.
- If buffer provisioning is done using the assumption of Poisson traffic then the network will be underprovisioned.
- The Hurst parameter is a dominant characteristic for a number of packet traffic engineering problems.
- The origins of LRD are uncertain but the most likely cause seems to be the aggregation of file transfer processes (ftp, p2p).
All is not as it seems…

- Trends and periodicities or other corrupting noise may be mistaken for LRD.
 - All techniques to find H are somewhat vulnerable to addition of short-range dependent data.
- A researcher (and a student 😊) relying on a single measure of the Hurst parameter is likely to draw false conclusions.

Applications for self-similarity studies

- Main idea is to statistically analyze traffic process
 - Build traffic models for simulators
 - Be able to analytically handle traffic
- Is Poisson model enough?
 - Recent studies show that using Poisson-modeled traffic significantly overestimates network performance
 - Self-similar models perform better
 - Multi-fractal models are even better
 - Multi-fractals dealt with in advanced courses
- However,
 - Self-similarity analysis is at the moment just "interesting"
 - Practical applications are few and far between (in networking)
Explanations for self-similar behavior

- Open loop –models (edge oriented)
 - Connections arrive at random
 - Files have size, network has rate
 - Heavy-tailed distribution of file sizes causes LRD
 - Are file sizes really heavy tailed?
- Closed loop –models (network oriented)
 - 90% traffic is closed loop (TCP)
 - Transmission of future packets depends up on the faith of the previous packets -> correlation independent of file size
- Mixed models
 - Protocol functionality is layered (TCP->IP->Ethernet)
 - Different layers act on different timescales -> multiple timescales (and self-similarity)

Measurement analysis summary

- Correlation
 - Cross- and auto
 - Significance
 - Interpretation
- Basics of timeseries analysis
- Self-similarity
 - Methods of how to determine
 - R/S, Variance-time, Periodograms
 - Causes, consequences