

Measurement analysis - II

Lecture slides for S-38.3183 21.3.2007 Mika Ilvesmäki

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Contents

- Dependence statistics
 - cross-correlation
 - autocorrelation
- Time series analysis
 - stability
- Self-similarity
 - Hurst parameter

Goals of this lecture

- · After this lecture you should know
 - What different correlation statistics there are
 - What different correlation statistics mean
 - And what things must be considered when evaluating different correlation statistics
 - Preliminary time series analysis
 - What self-similarity means and why it exists in the network
 - How self-similarity is evaluated
 - And how to calculate the Hurst parameter, in three different ways (requires reading "Chapter 2" also)

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Dependence statistics

- Cross-correlation
 - Calculated between two series
 - May be evaluated with a delay
 - Results in correlation series
- Autocorrelation
 - Calculated within the series
 - Correlation series indicates dependence or periodicity (or lack thereof)

Correlation

- If two phenomena covary
 - They do it in a positive or negative sense
 - Or not at all
 - Covariation is always perceived (through measurements)
- Correlation does not imply causality!

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Cross-correlation

- A standard method of estimating the degree to which two (different) series are (linearly) correlated
 - aka dot product,
- Normalized correlation coefficient that equals unity indicates perfect match
 - But gives no explanation why there is a perfect match.

Determining cross correlation

- Definition includes delay d (lag k...)
 - If sample index outside the series a) ignore b) assume zero c) wrap around (preferred)
 - Delay may be significantly less than series length N to test for short delay correlation only
 - If you find correlation with certain d it is an indication of a correlating phenomena with a time delay.
 - When two random processes (x and y) are statistically independent then the R_{xy} and R_{yx} are equal.
 - Hint: Always plot the original signals together with cross-correlation with varying lag (d)

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Properties of cross correlation

- High correlation likely indicates periodicity
- Correlation does not indicate any physical relation and correlation is indicated only based on the samples

Auto-correlation

- Observations on the signal should be equally spaced (in time or in space)
- Correlation between values of the same variable at different times (lagged signal)
 - A high correlation is likely to indicate a periodicity in the signal of the corresponding time duration.
 - The autocorrelation of a periodic function is, itself, periodic with the very same period.
- Auto-correlation with zero lag will always results in unity (perfect match)
 - Usually, as lag increases the auto-correlation value will decrease
- Used to detect non-randomness in data
- Auto-correlation with varying lag
 - Indicates the persistence (memory) of the proces

HELSINKI UNIVERSITY OF TECHNOLOGY

dika Ilvesmäki. D.Sc. (Tech.)

Properties of auto-correlation

- Properties of auto-correlation
 - How quickly random signal or processes change with respect to the time function
 - Whether process has a periodic component and what the expected frequency might be
 - The autocorrelation of a white noise signal will have a strong peak at d = 0 and will be close to 0 for all other d.
 - This shows that a sampled instance of a white noise signal is not statistically correlated to a sample instance of the same white noise signal at another time.

Time (or space) series

- Measured events occur in time (or in space)
 - Collect the timestamp (location) of the event in evenly spaced timeslots.
 - · Repeat, and you have yourself a timeseries
- Useful for determining the amount of data on a link
 - Arrived data or packets/Time window
- Useful for detecting the start and end of a phenomena

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Purpose of Time series analysis

- Time series analysis aims to:
 - identify the nature of the phenomenon represented by the observations
 - predict future values of the time series.
- Time series analysis ables us to extrapolate the identified pattern to predict future events
 - This does not depend up on our understanding of the underlying phenomena and/or the validity of our interpretation (theory) of the phenomenon

Procedure for time series analysis

- It is assumed that the data consist of a systematic pattern and random noise which usually makes the pattern difficult to identify.
- Is time series stable?
 - First question: Is it (the distribution) heavy tailed?
 - Process in three steps
 - Graph the series (x-axis time, y-axis event)
 - Periodicity, outliers, determine also basic statistics
 - Do histogram of the series
 - · Lose temporal structure, gain info on symmetry
 - Do the converging variance test
 - Plot S²_n for the first n observations as a function of n. If data has finite variance, the sample variance should converge to a finite value.

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Self-similarity

- Self-similar phenomenon looks the same when viewed at different scales of a dimension
 - Time: μs, ms,s,min,h,a etc.
 - Space: μm, mm,cm,m,km etc.
- Typically self-similarity of a phenomena means that there are non-negligible correlations between the event counts in far apart spaced observations (time, space)

Definition of self-similarity

- Self-similarity of a time series:
 - when aggregated...
 - (leading to a shorter time series in which each point is the sum of multiple original points)
 - the new series has the same autocorrelation function as the original...
 - and the series is distributionally selfsimilar.

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Self-similarity

- Long-range dependence
 - − A process with long-range dependence has an autocorrelation function $r(k)\sim k^{-\beta}$ as the lag $k->\infty$ and $0<\beta<1$
 - Therefore the r(k) of such process decays hyperbolically
 - · Poisson traffic decays exponentially
 - Hyperbolic decay is much slower than exponential decay
 - Since β<1, the sum of autocorrelation values approaches inifinity
- The parameter that is usually (for historic reasons) used to indicate the speed of decay of the series' autocorrelation function is the *Hurst* parameter
 - H=1- $\beta/2$ and therefore ½<H<1. As H approaches unity, the degree of self-similarity increases.
 - Simplified: To test self-similarity of a series: Is H significantly different from ½?

Hurst parameter

- There are several theoretically sound estimators for Hurst parameter
- However, they may disagree when applied to same data
- Differing views on how to preprocess data
 - At least aim to
 - remove mean,
 - trends,
 - best polynomial fit (of high order, like 10)

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Hurst parameter: Variance-time

- Variance-time relation
 - Calculate the variance of series as you take more and more of the series into the calculation
 - Plot variance-time relation
 - Log-log plot
 - A straight line with slope –β>-1 indicates selfsimilarity
- Estimation is made in time-domain

Hurst parameter: R/S-method

- R/S: Rescaled Range
 - Relies on rescaled range (R/S) statistic growing like a power law with H as a function of number of points n plotted.
 - The plot of R/S versus n on log-log has slope which estimates H
 - Process:
 - Divide a timeseries into K non-overlapping blocks, blocks vary from 1...n
 - · Compute R/S(n), the rescaled adjusted range for all n
 - R is the range of the data in the block n, S is the sample variance of the data in the same block.
 - The R/S values plotted against n should have n^H relation.
 - In log-log space the slope of the R/S vs. n -line is H
- Estimation is made in time-domain

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Hurst parameter: Periodograms

- Fact: Spectral density of self-similar processes obeys power law near the origin
 - The slope of the power spectrum of the series as frequency approaches zero (and is near origin)
 - The periodogram slope (in a log-log plot) is a straight line with slope 1-2H close to the origin (10% of the lowest frequencies)
- Estimation made in frequency domain

Other methods for estimating H

- Analysing wavelets
 - Generalized Fourier-transform
- Whittle estimator focuses on making observations near zero frequency
- Both of these methods are in the frequency domain
 - And all of these are dealt with in advanced courses ©

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Meaning of self-similarity

- A high value of Hurst parameter often increases delays and packet loss in a network.
- If buffer provisioning is done using the assumption of Poisson traffic then the network will be underprovisioned.
- The Hurst parameter is a dominant characteristic for a number of packet traffic engineering problems.
- The origins of LRD are uncertain but the most likely cause seems to be the aggregation of file transfer processes (ftp, p2p).

All is not as it seems...

- Trends and periodicities or other corrupting noise may be mistaken for LRD.
 - All techniques to find H are somewhat vulnerable to addition of short-range dependent data.
- A researcher (and a student ©) relying on a single measure of the Hurst parameter is likely to draw false conclusions.

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Applications for self-similarity studies

- · Main idea is to statistically analyze traffic process
 - Build traffic models for simulators
 - Be able to analytically handle traffic
- Is Poisson model enough?
 - Recent studies show that using Poisson-modeled traffic significantly overestimates network performance
 - Self-similar models perform better
 - Multi-fractal models are even better
 - · Multi-fractals dealt with in advanced courses
- However,
 - Self-similarity analysis is at the moment just "interesting"
 - Practical applications are few and far between (in networking)

Explanations for self-similar behavior

- Open loop -models (edge oriented)
 - Connections arrive at random
 - · Files have size, network has rate
 - Heavy-tailed distribution of file sizes causes LRD
 - · Are filesizes really heavytailed?
- Closed loop –models (network oriented)
 - 90% traffic is closed loop (TCP)
 - Transmission of future packets depends up on the faith of the previous packets -> correlation independent of file size
- · Mixed models
 - Protocol functionality is layered (TCP->IP->Ethernet)
 - Different layers act on different timescales -> multiple timescales (and self-similarity)

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Measurement analysis summary

- Correlation
 - Cross- and auto
 - Significance
 - Intrepretation
- Basics of timeseries analysis
- Self-similarity
 - Methods of how to determine
 - R/S, Variance-time, Periodograms
 - · Causes, consequences

