

Measurement analysis basics - I

Lecture slides for S-38.3183 14.3.2007 Mika Ilvesmäki

Mika Ilvesmäki, D.Sc. (Tech.)

Contents

- Basic concepts (events, traces)
- Data preprocessing, sampling
- Basic statistics
 - ranges, avearages, variations etc.
- Distributions
 - concepts, characteristics, parameterization
- Histograms

Mandatory reading

- Please, download from the course webpages "Chapter 2" of the 'hopefully someday to be published' -book
 - Chapter 2 contains a lot of information on statistics.
 - However, it is a draft and, therefore, full of typos, inconsistencies etc. Beware!
 - And if you find errors etc. please let the course personnel know of them! Thank you!
 - The material in Chapter 2 has to be mastered in the exercises (and in the final exam).
 - http://www.netlab.tkk.fi/opetus/s383183/k07/draft/chapter2-2007.pdf

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Goals of this lecture

- After this lecture you should know
 - Basic concepts related to traffic measurements
 - Trace, events, sampling, mask, aggregation, disaggregation
 - What can be measured in a network
 - What is done in data preprocessing
 - Basic statistics and their meaning
 - How distributions/histograms are formed from measurements and how they can be interpreted/characterized

What is there to measure?

- The event itself
 - Count of packets
- The size or some other quantitative property of the event itself
 - Packet size, flow duration
- Inter-event relation
 - Frequency of events, the time between two events

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Sampling

- With sampling one tries to form a picture of the whole by looking at a small(er) part
- Sample of sampling methods:
 - Sample packets with a fixed probability p and trace headers of sampled packets. This is the approach used by Cisco Netflow.
 - Independent Sampling: Sample every packet independently with a probability 1/p. Difficult to implement. Easy to analyze.
 - Periodic Sampling: Sample every 1/pth packet with probability 1. Easy to implement. Difficult to analyze.

When to sample

- If you have too much data
 - ...to fit into memory/spreadsheet/given amount of processor cycles etc.
- If you are short of time...
- Or exploring rarely happening events
- Remember: Trace is a sample of the network
 - Rather than sampling the trace file, sample the network (obtain more traces)
- Big question: Is the sample (and the sampling method behind it) representative of the phenomenon you're trying to observe?

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Measurement file: TRACE

- A file that has a set of measured properties (or events) from the network is called a <u>trace</u> (or a network trace)
- Trace has the following (relevant) property:
 - Length, inidicating the number of events (packets, flows or sessions etc.) or the time it covers
- Event entry consists of relevant event data
 - Packet nr, flow id., timestamp, addresses, ports, duration (flow), volume (flow) etc.
 - If some event data is not available, you might be able to create it (e.g., packet timestamps and 5-tuple info result in 5-tuple flows)
 - Though this might not be very straightforward

Data preprocessing I

- Data normalization
 - Normalization is done to achieve comparability of data across two or more sets of measurements
 - Normalization is also a way to reduce variation in measurements (normalizing to a range)
 - Examples:
 - · Min-Max method
 - · Z-score method
 - · Decimal scaling

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Data preprocessing II

- Data cleaning
 - Caveat! Are you cleaning away the noise or a previously undetected phenomena
- Data integration
 - Different sources, same concept but values expressed differently
 - Careful measurement planning, coherent use of measurement equipment
- Data reduction
 - Methods to reduce the dataset to smaller representations of the original data.

Masking & (Dis)Aggregating

- Regrouping packets by selected (parts of) header information -> obtaining sets of packets with common header value(s)
 - This new set is a network event that can be measured (size, nr of contained elements, etc.)
 - 5-tuple flow is one of the most common ones
- Iterative masking may be used to (dis)aggregate traffic further and provide reference points
 - Group by 5-tuple -> set of flows
 - Group flows by TCP/UDP Sport value -> set of flows originating from different Sports
 - OR group initially by TCP/UDP Sport value
 - · What statistics remain the same?

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Basic statistics – ranges and quantiles

- Statistical range indicates the range in which data lies
- · Quantiles perform the division of data
 - Quartile -> four groups
 - Percentile -> 100 groups
 - Interquantile ranges (for instance, the range between 2nd and 3rd quartile).

Basic statistics – indications of

- averageArithmetic mean is one of the most common statistic
 - Uses all data available
 - Is affected by extreme values
 - instant, exponential
- Median
 - Is the middlemost value in an ordered set
 - Not affected by extreme values

HELSINKI UNIVERSITY OF TECHNOLOGY

Basic statistics – indications of variation

- Variance is a measure of absolute variation
 - Depends on values and scale of measurements
 - Standard deviation is the squre root of variance
- Coefficient of Variation (CofV) is used to compare variation between several sets of data
- Mean deviation
 - Descriptive statistic, mean deviation from the mean
 - Uses absolute values, analytical calculations are harder to perform
 - · Good, "intuitive" measure of variation

Higher-moment statistics - Skewness

- Used to describe histograms
- Skewness
 - 3rd moment statistic
 - Measure of asymmtery of a frequency distribution
 - Towards the tail, larger skewness, longer tail
 - Large positive, right sided tail
 - · Large negative, left sided tail

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Higher-moment statistics - Kurtosis

- Kurtosis
 - 4th moment statistic
 - Measure of combined weight of tails in relation to the rest of the distribution
 - Heavy tails, larger kurtosis value
 - Peaked distribution, Kurtosis >0, Leptokurtic
 - Flat distribution, Kurtosis <0, Platykurtic

Moving averages

- MAs are lagging indicators of trends in the dataset
 - If there are no trends, MAs are pretty useless
 - Otherwise MAs smooth the behavior and make it easy to follow trends
- Several types of MAs to choose from
 - Simple moving average (SMA)
 - Exponential moving average (EMA)
 - Smoothed moving average
 - Linear Weighted moving average

HELSINKI UNIVERSITY OF TECHNOLOGY

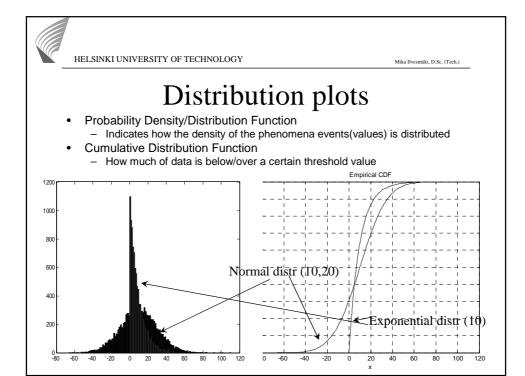
Mika Ilvesmäki, D.Sc. (Tech.)

Arithmetic moving average

- Average value over a set number of observations
 - Determine
 - Window size (how many samples)
 - Longer windows produce more reliable results of trends but are not that sensitive to sudden changes
 - Move the start point as you get new samples
- Better to identify long-term trend changes

Exponential moving average

- Reduces the lag of AMA by applying more weight to recent values
- The weight is determined by the window size
 - The shorter the window, the more weight on recent values
- Very sensitive to quick changes


HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Probability distributions - concepts

- A probability distribution gives the frequency (probability) of possible events
 - Sample space: individual IATs
 - Events: intervals of IAT (0.01s-0.02s)
- In probability the distributions are completely described by distribution type and parameters
 - Inifinite number of independent random events -> normal distribution
 - Rare events -> Poisson distribution
 - Reference point to statistical distributions
 - Verification of assumptions

Mika Ilvesmäki, D.Sc. (Tech.)

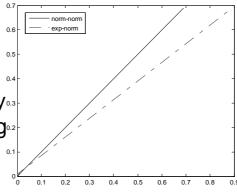
Stable distribution parameters

- Location
 - Either the midpoint (mean or median) or lower endpoint
- Spread
 - Variance, coefficient of variation. Determines the scale of the distribution
- Shape, general description or indicated by
 - Skewness that indicates the asymmetry around the mean
 - Kurtosis that indicates the peakedness/flatness or the weight in the tails of the distribution

Mika Ilvesmäki, D.Sc. (Tech.)

Distribution analysis

- To find a closed form equation for an experimental distribution is very hard
- Procedure includes
 - Comparison of appearance
 - Overlaid histograms (use relative values)
 - Sensitive to bin choices
 - Comparison of parameters
 - P-P plots or Q-Q plots



HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Probability-Probability plots

- Plot the reference (known) distribution
 - Preferably solid line
- Plot the unknown distribution
 - Usually dots
- If you find similarity^{0.3}
 focus on explaining^{0.2}
 the differences

Histograms

- To summarize data, make a histogram of it.
 - Graphical display of tabulated frequencies
 - Categories are nonoverlapping intervals of a variable
 - Frequencies can be displayed in the histogram
 - As is
 - · Divided by the total number of cases
 - Area under curve is 1
 - This is preferred for easier comparison with other distributions

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Bins?

- Bin is the category or class of the variable
- When plotting a histogram one must decide the bin size / number of bins
 - Too many bins -> flat histogram
 - Too few bins -> high towers -histogram
 - Appropriate bin size improves the possibility of getting the actual distribution

Mika Ilvesmäki, D.Sc. (Tech.)

Determining bin width

- Bin width as function of range and number of samples $W = \frac{R}{1 + \log_2 n}$
- Bin width as function of standard deviation and number of samples

$$W = 3.49 sN^{-\frac{1}{3}}$$

• Bin width as function of inter-quartile range (IQR) and number of samples

$$W = 2IQR \cdot N^{-\frac{1}{3}}$$

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Bin size and common sense

- Keep the bin width the same over traces if you intend to compare them
- Always experiment with other bin width values to get the best "look & feel".
- Bin size should be a multiple of data precision and the limits should be between possible readings
 - Bin 10<bin≤12 appeares to have center at 11
 - If data resolution is 1 then possible values within the bin are 11 and 12 (-> center at 11.5)
 - Choosing bin 10.5<bin≤12.5 has the center 11.5 and you
 do not have to worry about <, >,≤,≥ because no datapoint
 value will ever be 10.5 or 12.5.

Measurement analysis I summary

- Aim is to understand the nature of the measured phenomena with
 - Descriptive statistics
 - Means, measures of variation, range
 - Higher-order statistics
 - Distribution statistics
 - · Histograms, bin sizes
 - Distribution comparison

