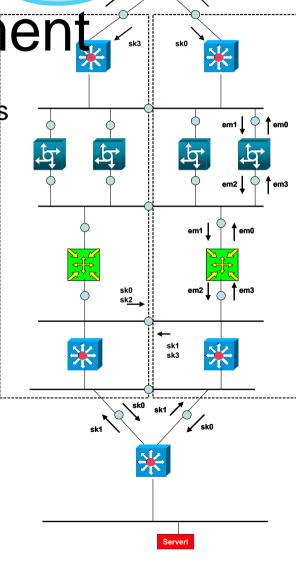


S-38.3183: Internet Traffic Measurements and Measurement Analysis

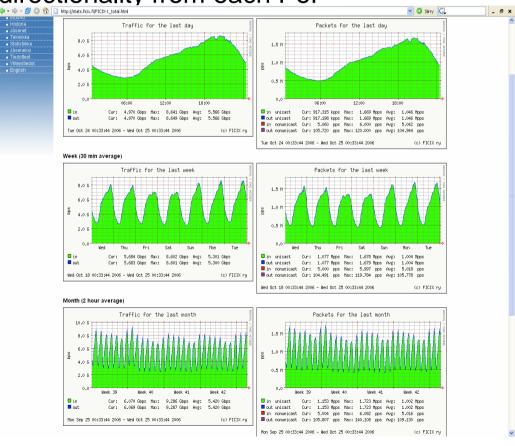
Lecture 10: Multipoint Network Measurements

Multipoint measurement


- Passive measurement done on the several locations at the same time
 - Each PoP
 - Each step of the network
 - Each step within service center
- Active measurements done from several locations at the same time
 - Mesh measurements
 - Between PE routers
 - Spatial measurement
 - Each access loop individually and mesh between PEs
 - Consolidation measurements
 - Various locations against single point

Multipoint méasurement

From single point of analysis to multi-point correlations

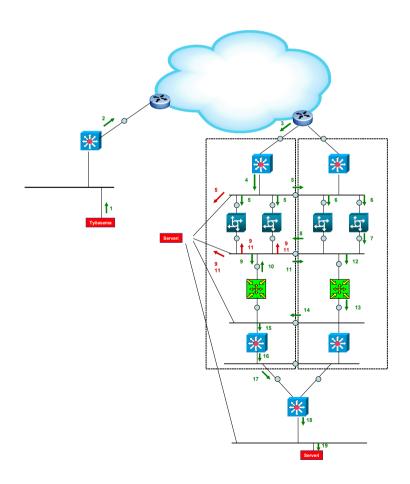

- Added accuracy
- Spatial differences
- Added challenges
 - N times more data
 - N times more devices
 - N point time synchronization

Analyze traffic load, pattern and directionality from each PoP

- Traffic matrices
 - Offered load vs goodput
 - Delays
 - Flow patterns
 - Load patterns
 - Protocol patterns
- Trend analysis
 - Input for dimensioning
- Charging records
 - Usage based charging

- Spatial analysis
 - Customer traffic generation
 - LAN traffic
 - Access network traffic
 - Shaping to the access link
 - PoP traffic
 - First stage of multiplexing
 - Core traffic
 - Second stage of multiplexing

- Traffic patterns
- Service usages
- Quality requirements
 - Dimensioning goals
- Lost packets
- Delays in different stages of the network



- Each step within service center
 - Offered load from the core network
 - VPN effects
 - FW effects
 - Load balancer effects
 - Service switching network
 - Storage services
 - Collaboration services
 - Mediation services
 - Consolidated services

- Progress of traffic
- Delays
- Errors
- Lost packets or connections
- Availability of services
- Misdirections

- Progress of the traffic can be analysed in detail
 - Is the packet flow (route) as expected
 - Are there replications
 - Are there changes
 - Expected
 - SBCs
 - Unexpected
 - Misbehaving device

c06 / 2005-04-19 Mikko Hiltunen

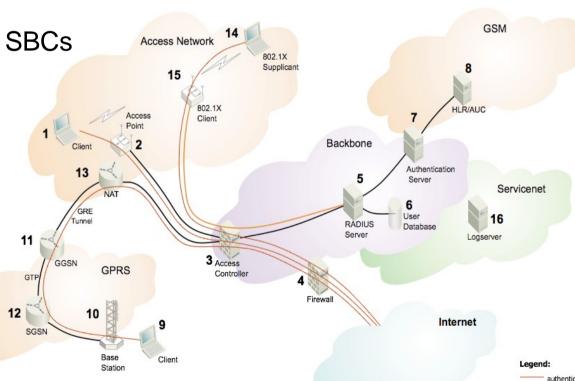
University of Oulu

legacy authentication 802.1x authentication

Passive multipoint measurement

 General problems with correlation of packets

Usually there are many SBCs which alter identities of packets


IP addresses

Ports

Tunneling

Crypting

• ALGs

FRONTIER-COMPAT: Network Overview

TEKNILLINEN KORKEAKOULU

Tietoverkkolaboratorio

Lic.(Tech.) Marko Luoma (9/16)

Problems

There are

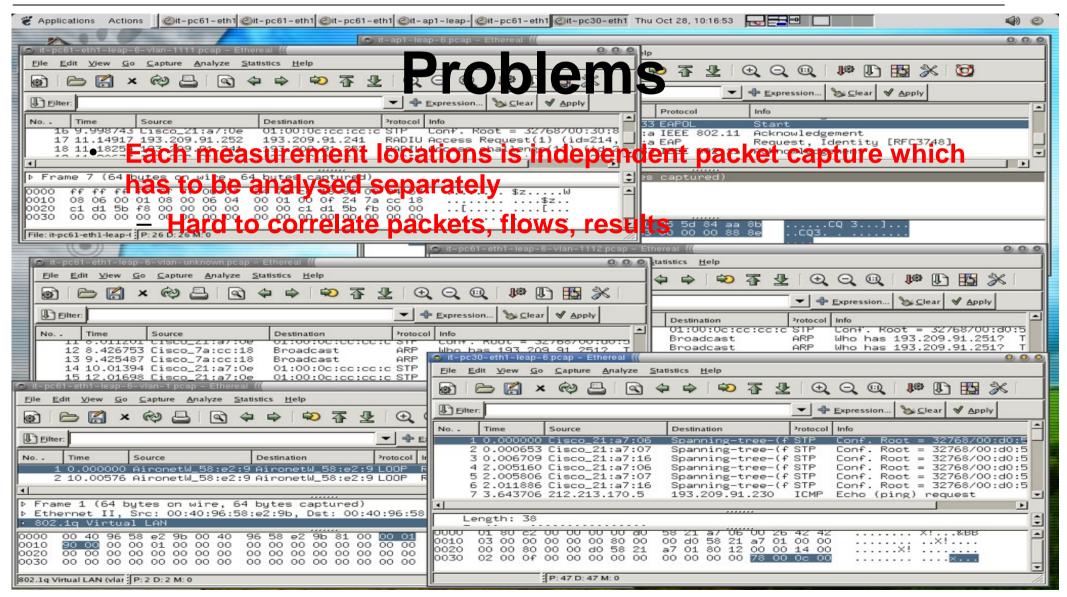
Tens of protocols to decode Gigabytes data

Noise

Often hard to combine packets on different points of network

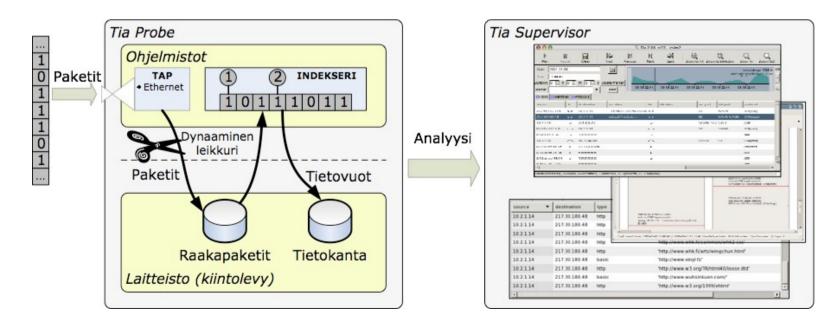
> authentication server

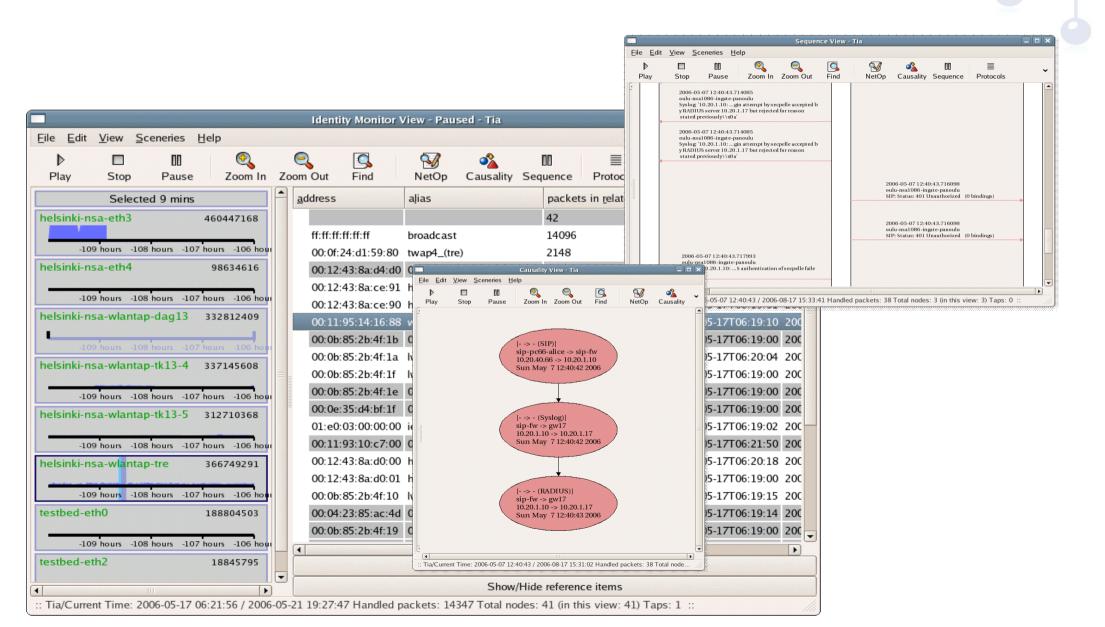
PPP RFC1661, RFC1662; Frame relay FRF.1, RFC1490 HDLC Cisco; IP RFC791; Ipv6 over Ipv4 supported, RFC2529; Ipv6 over lpv4 tunneling supported, RFC2185; Network time protocol RFC1305; Network address translation (NAT); DHCP RFC2131; CIDR RFC1519; ICMP Router Discovery (server portion) RFC1256; ICMP RFC792; ARP RFC826 Route agareagtion: Requirements for IPv4 routers RFC1812; Route redistribution; DVMRP RFC1075; IGMPv2 RFC2236; PIM-SM; Multicast tunnels; PIM-DM (multicast); RIPv1 RFC1058; VRRP RFC2338 ; OSPFv2 RFC2328; RIPv2 (with authentication); RFC1723; IGRP (optional) Cisco; Static routing BGP4 (optional, available only for IP330) RFC1771; Supports IEEE802.1x authentication framework GRE tunneling; SSL versions 2 and 3, TLS; version 1 supported; Native IPSec (IKE, AH, ESP); SSH server, versions 1 and 2; supported; MD5 Routing Authentication; (RIPv2) RFC1723; SNMPv3 with User-Based Security Model; Radius client RFC2865 Radius accounting client; RFC2866; Proxy Radius RFC2865; Virtual Router Redundancy; Protocol RFC2338 ; Traffic management; SSL/TLS RFC2246; SSL/TLS RFC2216; SSH server, versions 1 and 2 supported; SNMP, SNMPv2 and SNMPv3 CLI via Telnet RFC854; RFC959; SMTP mail (send) RFC821; RFC1760; SNMP and SNMP MIB II RFC1213; RADIUS auth.client MIB RFC2618; RADIUS acc.client MIB RFC2620; P022 MIB; DiffServ, EF) RFC2598; 1350 The TFTP Protocol


Kitchen sink?

TEKNILLINEN KORKEAKOULU

Tietoverkkolaboratorio


Lic.(Tech.) Marko Luoma (10/16)


Solution

- Clarified Networks HowNetWorks
 - Finnish SME developing tools to bring order into chaos
 - Causality analysis -> causalities are easier to understand for humans than individual bits and packets

Active Multipoint Measurements

- Availability analysis between PE's
 - Potential outages of the network
- Delays between PE's
 - Load level vs SPF optimization
- KPI analysis for core network
 - Delay, jitter, loss

Active Multipoint Measurements

- Spatial composition
 - Each stage of the network is measured as a separate entity
 - Same level of aggregation in measurement traffic as there is aggregation in users
 - Each customer has not separate core network measurement stream rather one measurement which results are shared
 - Each customer has individual access loop measurement whose results are composited to core measures
 - Lower accuracity with better scaling

Active Multipoint Measurements

- Consolidation measurements
 - Testing from several locations to single point in the network
 - User sites to consolidated service center
 - Users to NPs Internet gw
 - Between service demarcation points
 - Hub and spoke VPN

Multipoint Measurements

- Challenges
 - Time synchronization
 - System time differences limit the accuracy of measurements
 - Local oscillators with initial synchronization
 - NTP
 - GPS
 - Processing time constraints
 - Injection of time information into packets
 - HW/SW
 - Packet rings
 - IRQ mitigation