
Application and TCP measurements

Markus Peuhkuri

2006-04-06

Lecture topics
� What to measure in applications

� Application traffic analysis

� Protocol analysis

– RTP / RTCP

– TCP

– how about secure encapsulation

� Host-based diagnostics

After this lecture you should
� Know how to do application-specific measurements

� Know how to extract quality information from protocol headers

� Know how to analyse application logs

What can be measured from a network
� QoS performance

� Applications used

� Protocol extensions used

� Protocol parameters

� Protocol and implementation anomalies

What is important for applications
� Throughput

– file and document transfers

– should get a fair share of resources

� Delay

– interactive or real-time applications

– maximum upper bound for delay (or for some fraction of traffic)

� Loss

– packet loss results loss of application fidelity

� Applications can have complex interrelations between these
⇒ must consider carefully before concluding

1

How to test for throughput
� Just transfer a large file

– time wget http://site.example/latest.iso

� Benefits

– easy to do and analyse

– 640MiB in 3701 seconds ⇒1,45Mbit/s

� Problems

– depends on other systems and network
⇒ tells very little on network

– gives only present performance for additional traffic

– results additional load on network

– depends on TCP implementations used
� Reno, Vegas, BIC, Westwood, . . .
� window size

Throughput: flow-based passive
� Use flow data: eg NetFlow

– calculate average throughput

� Benefits

– may be readily available

– continuous measurements

� Problems

– many flows have lulls, either receiver or sender initiated [18]

� A possible algorithm

1. select only the largest flows

2. group by network topology i.e. either by sender or receiver

3. build throughput histogram possibly grouping multi-day measurements by time of day.

Throughput: packet-based passive
� Capture packets, group by flows

� Determine if a flow is

– host-limited

– network-limited

– by analysing TCP headers (see page 4)

� Benefits

– one is able to select only bulk transfers

– extract bulk transfer periods

� Problems

– a large amount of data, additional hardware

2

Active measurements classes

SO Sender Only measurements depend on standard functionality

� ICMP echos and diagnostic methods
� depends on other system functioning properly

SRP Sender and receiver paired measurements

� possible to use measurement specific packets
� accurate time stamps, sequence numbers

RO Recipient Only: most limited functionality

� depends the sender to behave as expected
� packet-pair sending
� passive analysis

Throughput: active probes
� Try to estimate

– bottleneck capacity

– available bandwidth

� Packet pairs (trains)

� Estimate TCP capacity

– loss process

– maximum delay

– optimum window size

Pr

ArAs

Pb

ReceiverSender

Ab

[10, 5]

Delay measurements
� Easy to do active RTT

– no need to synchronise clocks

– ICMP echo

– TCP handshake

– UDP response

– take end system delay into account

� One-way delays more difficult

– software support

– clock synchronisation or clock skew estimation

� Take account possible classification

� Low bandwidth requirements

– get sufficient number of samples

3

Passive delay measurements
� Packet-level measurements

� TCP

– time difference between data and corresponding ACK

– ack may be lost too

– end system characteristics[14]

� RTP [17]

– has timestamp for samples: if there is standard PCM voice, the timestamp counter is
incremented by 8000 every second

– if monitored on far end, delay variation can be identified

– note possible clock skew

� Flow-based analysis possible

– short flows

– 1st packet of flow

When an average is not the perceived average
� Example: measure delay by sending one packet every second

– you get 86400 measurement samples for delay each day

– average over samples 75ms
⇒ network ok for VoIP?

� However, users complain that there is quite lot of delay

� Performance problems in 9 – 15 peak use

– one quarter of samples from that period of time: average 200ms

– off-peak samples have average of 33ms

� Performance must be weighted by use

Loss measurements
� Active similarly to delay measurements

� Passive measurements

– TCP retransmissions

– RTP sequence number monitoring

– RTCP receiver reports

TCP header analysis
� Sequence numbers and ack numbers

� TCP options used

� Interesting analysis

– delay

– throughput received

– spurious retransmits: note that even if we see duplicate segments at our measurement
point, the segment may be lost between us and host

4

– other implementation problems [14]

0
0 1 2 3 4 5 6 7 8 9

1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Source Port Destination Port
Sequence number

Acknowledgment Number

Data
Offset Reserved

U

R

G

A

C

K

P

S

H

R

S

T

S

Y

N

F

I

N

Window

Checksum Urgent Pointer
Options Padding

payload

TCP RTT delay
� Every data sent should be acknowledged

� Pair sent sequence numbers to received acknowledgement numbers. Make note that the
sequence number indicates the first octet while corresponding acknowledgement number is
the sequence number of one following last octet. Thus, if seq=1000 and segment has 500
bytes, then ack=1501.

� Measure the time between

� Some caveats

– not every segment is acknowledged

– ack may not be immediate as the receiver may wait for additional packets to arrive or
the end system may be busy

– 1st ack you see may not be the first ack sent

– asymmetric routing

– normal passive measurements analysis

1-way TCP loss analysis
� Problem: determine if there are lost packets in TCP connections without keeping full TCP

state

� Get a rough number: count only retransmissions

1. for each packet received, check if it is part of existing flow

2. check if sequence number is less than in one before (beware seq number wrap)

3. if so, count as retransmission

� One gets some lower estimate for packet loss

� Spurious retransmits may be an issue

RTP header analysis
� RTP provides synchronisation of different media

� Identifier of different senders

� Sequence numbers provide message ordering

– one can identify on-wire if some packets are lost

� Delay estimation using timestamps

– one must know timestamp rate

5

0
0 1 2 3 4 5 6 7 8 9

1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

V=2 P X CC M PT sequence number
timestamp

SSRC

CSRC list

extension header, data

RTCP report analysis
� Provides statistic information (maximum of 5 % data rate)

� Sender reports

– NTP timestamp and RTP timestamp mapping

– sent packets and payload bytes

� Reception reports for each source

– fraction lost (indicated as 1/256 units)

– cumulative packets lost that is calculated as difference between expected number of
packets received and actual number of packets received. Duplicate or late packets are
not counted as late.

– highest sequence number received as 32-bit extended number

– jitter value
J(i) = J(i − 1) + (|D(i − 1, i)| − J(i − 1))/16 (1)

D(i, j) = (Rj − Ri) − (Sj − Si) = (Rj − Sj) − (Ri − Si) (2)

where Si is RTP timestamp in packet i and Ri is arrival time (in timestamp units).

– information about last SR: timestamp and 1/65536 seconds from the last one

Voice performance
� Human tests: MOS (Mean Opinion Score)

– a set of test users

– for each test, a grade 1 – 5 is given

1. bad

2. poor

3. fair

4. good

5. excellent

– expensive and time-consuming

– codecs and systems language-dependent. There are significant differences between
both languages and genders how well each compression method performs.

� Automated tests

– characterise network performance

– estimate MOS based on those parameters

6

E-model
� A computational model for use in transmission planning [9]

� Takes a set of parameters

Ro basic signal-to-noise ratio

Is simultaneous impairment factors

Id delay impairment factors

Ie equipment impairment factors, for example voice codec and bit rate used has an effect
on here. PCM at 64 kbit/s has value of 0 while GSM full-rate codec has value 20
(half-rate 23)

A advantage factor to take into account user’s expectations (0 – 20), results approximately
MOS difference of one unit

R = Ro − Is − Id − Ie + A (3)

R MOS GoB PoW Users
≥ 100 4.5 (maximum)

90 4.34 97 ≈0 Very satisfied
80 4.03 89 ≈0 Satisfied
70 3.60 73 6 Some dissatisfied
60 3.10 50 17 Many dissatisfied
50 2.58 27 38 Nearly all dissatisfied

≤ 0 1 (minimum)

GoB Good or Better, the percentage of users who think connection to be better than
reference connection

PoW Poor or Worse

Algorithm-based VoIP measurements
� PESQ[6] most appropriate for VoIP

– older: PSQM, PSQM+,

– errors are different in VoIP than GSM or PSTN

� Network measurements

– RTP timestamps, sequence numbers and reports from live traffic

– use active measurements tools to estimate parameters

� Feed network-affected voice to analysis

Time align and equalise

Level align

Input filter

Auditory transform

Level align

Input filter

Auditory transform

Distrubance processing

Cognitive modelling
Fix intervals

Prediction of perceived quality

Reference signal System under test

7

IP Performance Metrics (ippm) [15]
� IETF working group developing a set of standard metrics for Internet data delivery services

– quality

– performance

– reliability

� Can be used by all parties: network operators, end users, or independent testing groups

� Metrics defined:

– connectivity [12]

– one-way delay and loss [1, 2]

– round-trip delay and loss [3]

– delay variation [7]

– loss patterns [11]

– packet reordering

– bulk transport capacity [13, 16]

– link bandwidth capacity

The IPPM WG will develop a set of standard metrics that can be applied to the
quality, performance, and reliability of Internet data delivery services. These metrics
will be designed such that they can be performed by network operators, end users,
or independent testing groups. It is important that the metrics not represent a value
judgement (i.e. define “good” and “bad”), but rather provide unbiased quantitative
measures of performance.

Flow data
� Cisco has used Netflow export format

– incompatibles between vendors

� IPFIX (IP Flow Information Export)

– based on Netflow v9

– specification mostly done

Accounting and AAA information
� Accounting systems collect information about network traffic

– CRANE [19]

� AAA systems

– Diameter [4]

� Highly aggregate data

– total bytes, packets

– can be used to estimate traffic demand

Protected data: IPSec
� Is it possible to conclude anything about those

� In general: no

� It may be possible to conclude something

– traffic volume

– single-application VPN characteristics

8

Non-network measurements
� Network application logs

– http servers
� client IP address and model
� document size
� date, transfer time
� request correlation

72.30.110.140 - - [06/Apr/2006:07:58:46 +0300] "GET /korso2005/ HTTP/1.0" 200

737 "-" "Mozilla/5.0"

– mail servers
� message sizes
� service times: some email servers currently wait some time before accepting email

to identify some spammer software. Also there may be delay resulting from black-
list lookups etc.

– ftp servers

� Response time for application, for example to monitor database server; includes both net-
work and application delays. These can be used as part of SLA verification tools, especially
if “whole service” (i.e. both the network and the server) is provided by one service provider.

� Mostly appropriate for estimating traffic demand

Application performance
� In addition to data transmission QoS

� Call setup time

– PDD (Post Dialling Delay) [8]

� Channel change time for IPTV

� System responsiveness

� These are best measured on end systems

– instrumented application

– test equipment

Statistics from end systems
� End systems collect protocol statistics

– OS dependent

– counter wrap

� Provides indication of network quality

– TCP retransmits

– TCP reorders

Ip:

48967 total packets received

0 forwarded

0 incoming packets discarded

48831 incoming packets delivered

33700 requests sent out

Icmp:

9 ICMP messages received

0 input ICMP message failed.

9

ICMP input histogram:

destination unreachable: 9

0 ICMP messages sent

0 ICMP messages failed

ICMP output histogram:

Tcp:

192 active connections openings

16 passive connection openings

0 failed connection attempts

9 connection resets received

7 connections established

48253 segments received 232 segments / connection

33257 segments send out 160 segments / connection

13 segments retransmited 0.04 % retransmits

0 bad segments received.

60 resets sent

Udp:

434 packets received

0 packets to unknown port received.

0 packet receive errors

442 packets sent

TcpExt:

12 packets pruned from receive queue because of socket buffer overrun

40 TCP sockets finished time wait in fast timer

1356 delayed acks sent

Quick ack mode was activated 23 times

9 packets directly queued to recvmsg prequeue.

535 of bytes directly received from backlog

60 of bytes directly received from prequeue

37205 packet headers predicted

3 packets header predicted and directly queued to user

453 acknowledgments not containing data received

312 predicted acknowledgments

1 congestion windows recovered after partial ack

0 TCP data loss events

5 other TCP timeouts

341 packets collapsed in receive queue due to low socket buffer

6 connections reset due to unexpected data

6 connections reset due to early user close

1 connections aborted due to timeout

% netstat -s

Ip:

49526913 total packets received

9316140 forwarded

0 incoming packets discarded

37552025 incoming packets delivered

55090221 requests sent out

2952 outgoing packets dropped

10 fragments dropped after timeout

52771775 reassemblies required

5966080 packets reassembled ok

152 packet reassembles failed

11693318 fragments received ok

Icmp:

259266 ICMP messages received

463 input ICMP message failed.

ICMP input histogram:

destination unreachable: 37001

timeout in transit: 307

source quenches: 2

echo requests: 221591

echo replies: 3

463977 ICMP messages sent

0 ICMP messages failed

ICMP output histogram:

10

destination unreachable: 236219

time exceeded: 72

redirect: 6095

echo replies: 221591

Tcp:

41926 active connections openings

650042 passive connection openings

24499 failed connection attempts

41515 connection resets received

15 connections established

27207697 segments received 39 segments / connection

35352653 segments send out 51 segments / connection

107436 segments retransmited 3 % restansmits

2851 bad segments received.

56397 resets sent

Udp:

9925464 packets received

144656 packets to unknown port received.

402 packet receive errors

32968468 packets sent

TcpExt:

267353 resets received for embryonic SYN_RECV sockets

45 ICMP packets dropped because they were out-of-window

77499 TCP sockets finished time wait in fast timer

3 time wait sockets recycled by time stamp

36 packets rejects in established connections because of timestamp

385649 delayed acks sent

2925 delayed acks further delayed because of locked socket

Quick ack mode was activated 13198 times

646595 packets directly queued to recvmsg prequeue.

3271571 of bytes directly received from backlog

549815762 of bytes directly received from prequeue

5340998 packet headers predicted

401429 packets header predicted and directly queued to user

2676410 acknowledgments not containing data received

14962075 predicted acknowledgments

127 times recovered from packet loss due to fast retransmit

10782 times recovered from packet loss due to SACK data

Detected reordering 20 times using reno fast retransmit

TCPDSACKUndo: 12

4141 congestion windows recovered after partial ack

9406 TCP data loss events

TCPLostRetransmit: 1

117 timeouts after reno fast retransmit

4379 timeouts after SACK recovery

337 timeouts in loss state

23084 fast retransmits

489 forward retransmits

4864 retransmits in slow start

52291 other TCP timeouts

TCPRenoRecoveryFail: 37

863 sack retransmits failed

367 times receiver scheduled too late for direct processing

16671 DSACKs sent for old packets

1482 DSACKs sent for out of order packets

2845 DSACKs received

900 connections reset due to unexpected data

615 connections reset due to early user close

2366 connections aborted due to timeout

% netstat -s

UDP

udpInDatagrams =116690321 udpInErrors = 0

udpOutDatagrams =126637248

TCP tcpRtoAlgorithm = 4 tcpRtoMin = 400

tcpRtoMax = 60000 tcpMaxConn = -1

11

tcpActiveOpens =11063565 tcpPassiveOpens =8857655

tcpAttemptFails =5605680 tcpEstabResets =333124

tcpCurrEstab = 284 tcpOutSegs =2433610475

tcpOutDataSegs =1829582137 tcpOutDataBytes =4291730024

tcpRetransSegs =4618387 tcpRetransBytes =4194709197

tcpOutAck =603500275 tcpOutAckDelayed =20033072

tcpOutUrg = 0 tcpOutWinUpdate =136839

tcpOutWinProbe =151290 tcpOutControl =35759699

tcpOutRsts =864119 tcpOutFastRetrans =542751

tcpInSegs =2508775648

tcpInAckSegs =1214188950 tcpInAckBytes =2161643669

tcpInDupAck =26633792 tcpInAckUnsent = 0

tcpInInorderSegs =1567697694 tcpInInorderBytes =735960060

tcpInUnorderSegs =181743 tcpInUnorderBytes =154652942

tcpInDupSegs =589996 tcpInDupBytes =36748252

tcpInPartDupSegs = 4194 tcpInPartDupBytes =1802910

tcpInPastWinSegs = 1693 tcpInPastWinBytes =122699007

tcpInWinProbe = 5726 tcpInWinUpdate =132144

tcpInClosed = 82623 tcpRttNoUpdate =1365731

tcpRttUpdate =1201346033 tcpTimRetrans =5016742

tcpTimRetransDrop = 69051 tcpTimKeepalive = 60025

tcpTimKeepaliveProbe= 8128 tcpTimKeepaliveDrop = 34

tcpListenDrop =256703 tcpListenDropQ0 = 0

tcpHalfOpenDrop = 0 tcpOutSackRetrans =988463

IP ipForwarding = 2 ipDefaultTTL = 255

ipInReceives =2477584094 ipInHdrErrors = 0

ipInAddrErrors = 0 ipInCksumErrs = 0

ipForwDatagrams = 0 ipForwProhibits = 33

ipInUnknownProtos = 64 ipInDiscards = 2

ipInDelivers =2617639644 ipOutRequests =2455379708

ipOutDiscards = 183 ipOutNoRoutes = 0

ipReasmTimeout = 60 ipReasmReqds = 10802

ipReasmOKs = 10748 ipReasmFails = 54

ipReasmDuplicates = 3 ipReasmPartDups = 0

ipFragOKs =3626344 ipFragFails = 1

ipFragCreates =76043592 ipRoutingDiscards = 0

tcpInErrs = 4166 udpNoPorts =4498522

udpInCksumErrs = 1092 udpInOverflows = 34219

rawipInOverflows = 0

ICMP icmpInMsgs =3320175 icmpInErrors = 0

icmpInCksumErrs = 1753 icmpInUnknowns = 0

icmpInDestUnreachs =597470 icmpInTimeExcds =220863

icmpInParmProbs = 0 icmpInSrcQuenchs = 0

icmpInRedirects = 35481 icmpInBadRedirects = 35481

icmpInEchos =2464564 icmpInEchoReps = 44

icmpInTimestamps = 0 icmpInTimestampReps = 0

icmpInAddrMasks = 0 icmpInAddrMaskReps = 0

icmpInFragNeeded = 567 icmpOutMsgs =2937414

icmpOutDrops = 90 icmpOutErrors = 0

icmpOutDestUnreachs =472841 icmpOutTimeExcds = 9

icmpOutParmProbs = 0 icmpOutSrcQuenchs = 0

icmpOutRedirects = 0 icmpOutEchos = 0

icmpOutEchoReps =2464564 icmpOutTimestamps = 0

icmpOutTimestampReps= 0 icmpOutAddrMasks = 0

icmpOutAddrMaskReps = 0 icmpOutFragNeeded = 1

icmpInOverflows = 0

IGMP:

222062 messages received

0 messages received with too few bytes

0 messages received with bad checksum

222014 membership queries received

0 membership queries received with invalid field(s)

32 membership reports received

0 membership reports received with invalid field(s)

12

32 membership reports received for groups to which we belong

48 membership reports sent

Conclusion
� Possible to estimate application throughput using network measurements

� Applications can collect performance data

� Perceived quality estimation

– Quality of Experience

– data, voice, video quality

References

[1] G. Almes, S. Kalidindi, and M. Zekauskas. A One-way Delay Metric for IPPM. Request for
Comments RFC 2679, Internet Engineering Task Force, September 1999. (Internet Proposed
Standard). URL:http://www.ietf.org/rfc/rfc2679.txt.

[2] G. Almes, S. Kalidindi, and M. Zekauskas. A One-way Packet Loss Metric for IPPM. Re-
quest for Comments RFC 2680, Internet Engineering Task Force, September 1999. (Internet
Proposed Standard). URL:http://www.ietf.org/rfc/rfc2680.txt.

[3] G. Almes, S. Kalidindi, and M. Zekauskas. A Round-trip Delay Metric for IPPM. Request for
Comments RFC 2681, Internet Engineering Task Force, September 1999. (Internet Proposed
Standard). URL:http://www.ietf.org/rfc/rfc2681.txt.

[4] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko. Diameter Base Protocol. Re-
quest for Comments RFC 3588, Internet Engineering Task Force, September 2003. (Internet
Proposed Standard). URL:http://www.ietf.org/rfc/rfc3588.txt.

[5] Robert L. Carter and Mark E. Crovella. Measuring bottleneck link speed in packet-switched
networks. Performance Evaluation, 27&28:297–318, 1996.

[6] Adrian E. Conway and Yali Zhu. A simulation-based methodology and tool for automating
the modeling and analysis of voice-over-IP perceptual quality. Performance Evaluation 54
(2003) 129 147, 54(2):129–147, October 2003.

[7] C. Demichelis and P. Chimento. IP Packet Delay Variation Metric for IP Performance Met-
rics (IPPM). Request for Comments RFC 3393, Internet Engineering Task Force, November
2002. (Internet Proposed Standard). URL:http://www.ietf.org/rfc/rfc3393.txt.

[8] Service quality assessment for connection set-up and release delays. ITU-T Recommendation
E.431, International Telecommunication Union, 1992.

[9] The e-model, a computational model for use in transmission planning. ITU-T Recommen-
dation G.107, International Telecommunication Union, 2000.

[10] Van Jacobson. Pathchar: How to infer the characteristics of internet
paths. Lecture at Mathematical Sciences Research Institute, April 1997.
URL:ftp://ftp.ee.lbl.gov/pathchar/msri-talk.pdf.

[11] R. Koodli and R. Ravikanth. One-way Loss Pattern Sample Metrics. Request for
Comments RFC 3357, Internet Engineering Task Force, August 2002. (Informational).
URL:http://www.ietf.org/rfc/rfc3357.txt.

[12] J. Mahdavi and V. Paxson. IPPM Metrics for Measuring Connectivity. Request for Com-
ments RFC 2678, Internet Engineering Task Force, September 1999. (Internet Proposed
Standard) (Obsoletes RFC2498). URL:http://www.ietf.org/rfc/rfc2678.txt.

[13] M. Mathis and M. Allman. A Framework for Defining Empirical Bulk Transfer Capacity
Metrics. Request for Comments RFC 3148, Internet Engineering Task Force, July 2001.
(Informational). URL:http://www.ietf.org/rfc/rfc3148.txt.

13

http://www.ietf.org/rfc/rfc2679.txt
http://www.ietf.org/rfc/rfc2680.txt
http://www.ietf.org/rfc/rfc2681.txt
http://www.ietf.org/rfc/rfc3588.txt
http://www.ietf.org/rfc/rfc3393.txt
ftp://ftp.ee.lbl.gov/pathchar/msri-talk.pdf
http://www.ietf.org/rfc/rfc3357.txt
http://www.ietf.org/rfc/rfc2678.txt
http://www.ietf.org/rfc/rfc3148.txt

[14] V. Paxson, M. Allman, S. Dawson, W. Fenner, J. Griner, I. Heavens, K. Lahey,
J. Semke, and B. Volz. Known TCP Implementation Problems. Request for Com-
ments RFC 2525, Internet Engineering Task Force, March 1999. (Informational).
URL:http://www.ietf.org/rfc/rfc2525.txt.

[15] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis. Framework for IP Performance Metrics.
Request for Comments RFC 2330, Internet Engineering Task Force, May 1998. (Informa-
tional). URL:http://www.ietf.org/rfc/rfc2330.txt.

[16] V. Raisanen, G. Grotefeld, and A. Morton. Network performance measurement with periodic
streams. Request for Comments RFC 3432, Internet Engineering Task Force, November 2002.
(Internet Proposed Standard). URL:http://www.ietf.org/rfc/rfc3432.txt.

[17] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Proto-
col for Real-Time Applications. Request for Comments RFC 3550, Internet Engineer-
ing Task Force, July 2003. (Internet Standard) (Obsoletes RFC1889) (Also STD0064).
URL:http://www.ietf.org/rfc/rfc3550.txt.

[18] Matti Siekkinen, Guillaume Urvoy-Keller, Ernst W Biersack, and Taoufik En-Najjary. Root
cause analysis for long-lived TCP connections. In Co-NEXT 2005, 1st ACM/e-NEXT In-
ternational Conference on Future Networking Technologies, 24-27 October, 2005, Toulouse,
France, October 2005.

[19] K. Zhang and E. Elkin. XACCT’s Common Reliable Accounting for Network
Element (CRANE) Protocol Specification Version 1.0. Request for Comments
RFC 3423, Internet Engineering Task Force, November 2002. (Informational).
URL:http://www.ietf.org/rfc/rfc3423.txt.

14

http://www.ietf.org/rfc/rfc2525.txt
http://www.ietf.org/rfc/rfc2330.txt
http://www.ietf.org/rfc/rfc3432.txt
http://www.ietf.org/rfc/rfc3550.txt
http://www.ietf.org/rfc/rfc3423.txt

