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Goals of this lecture
• After this lecture you should know

– What different correlation statistics there are
– What different correlation statistics mean
– And what things must be considered when
evaluating different correlation statistics

– Preliminary time series analysis
– What self-similarity means and why it exists in the 
network

– How self-similarity is evaluated
• And how to calculate the Hurst parameter, in three
different ways (requires reading ”Chapter 2” also)
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Dependence statistics
• Cross-correlation

– Measured between two series
– May be evaluated with a delay

• Results in correlation series
• Autocorrelation

– Calculated within the series
– Correlation series indicates periodicity (or

lack thereof)
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Correlation
• If two phenomena covary

– They do it in a positive or negative sense
• Or not at all

– Covariation is always perceived (through
measurements)

• Correlation does not imply causality!
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Cross-correlation
• A standard method of estimating the 
degree to which two (different) series
are (linearly) correlated
– aka dot product, 

• Normalized correlation coefficient that
equals unity indicates perfect match
– But gives no explanation why there is a 

perfect match.
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Determining cross correlation
• Definition includes delay d (lag k…)

– If sample index outside the series a) ignore b) 
assume zero c) wrap around (preferred)

– Delay may be significantly less than series length
N to test for short delay correlation only

– If you find correlation with certain d it is an 
indication of a correlating phenomena with a time
delay.

– When two random processes (x and y) are 
statistically independent then the Rxy and Ryx are equal.

– Hint: Always plot the original signals together with 
cross-correlation with varying lag (d)
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Properties of cross correlation
• High correlation likely indicates periodicity
• Correlation does not indicate any physical relation and 

correlation is indicated only based on the samples
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Auto-correlation
• Observations on the signal should be equally spaced (in time or

in space)
• Correlation between values of the same variable at different

times (lagged signal)
– A high correlation is likely to indicate a periodicity in the 
signal of the corresponding time duration. 

– The autocorrelation of a periodic function is, itself, periodic 
with the very same period. 

• Auto-correlation with zero lag will always results in unity (perfect
match)
– Usually, as lag increases the auto-correlation value will decrease

• Used to detect non-randomness in data
• Auto-correlation with varying lag

– Indicates the persistence (memory) of the proces
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Properties of auto-correlation
• Properties of auto-correlation

– How quickly our random signal 
or processes changes with 
respect to the time function

– Whether our process has a 
periodic component and what 
the expected frequency might 
be

– The autocorrelation of a white 
noise signal will have a strong 
peak at d = 0 and will be close 
to 0 for all other d. 
• This shows that a sampled 
instance of a white noise 
signal is not statistically 
correlated to a sample 
instance of the same white 
noise signal at another time. 
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Time series
• Measured events occur in time (or in 
space)

• Collect the timestamp (location) of the event
• Repeat, and you have yourself a timeseries

• Useful for determining the amount of 
data on a link
– Arrived data or packets/Time window

• Useful for detecting the start and end of 
a phenomena
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Purpose of Time series analysis
• Time series analysis aims to: 

– identify the nature of the phenomenon 
represented by the observations

– predict future values of the time series. 
• Time series analysis ables us to extrapolate 

the identified pattern to predict future events  
– This does not depend up on our understanding of 
the underlying phenomena and/or the validity of 
our interpretation (theory) of the phenomenon
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Procedure for time series analysis
• It is assumed that the data consist of a systematic 
pattern and random noise which usually makes the 
pattern difficult to identify. 

• Is time series stable?
– First question: Is it (the distribution) heavy tailed?
– Process in three steps

• Graph the series (x-axis time, y-axis event)
– Periodicity, outliers, determine also basic statistics
– Do histogram of the series

• Lose temporal structure, gain info on symmetry
– Do the converging variance test

• Plot S2
n for the first n observations as a function of n. If data 

has finite variance, the sample variance should converge to a 
finite value. 
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Self-similarity
• Self-similar phenomenon looks the 
same when viewed at different scales of 
a dimension
– Time: µs, ms,s,min,h,a etc.
– Space: µm, mm,cm,m,km etc.

• Typically self-similarity of a phenomena 
means that there are non-negligible 
correlations between the event counts 
in far apart spaced observations (time, 
space)
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Definition of self-similarity
• Self-similarity of a time series:

– when aggregated…
• (leading to a shorter time series in which each 
point is the sum of multiple original points) 

– the new series has the same 
autocorrelation function as the original…

– and the series is distributionally self-
similar.  

HELSINKI UNIVERSITY OF TECHNOLOGY Mika Ilvesmäki, D.Sc. (Tech.)

Self-similarity
• Long-range dependence

– A process with long-range dependence has an autocorrelation function r(k)~ k-β as the lag k->∞ and 0<β<1
– Therefore the r(k) of such process decays hyperbolically 

• Poisson traffic decays exponentially
• Hyperbolic decay is much slower than exponential decay
• Since β<1, the sum of autocorrelation values approaches
inifinity

• The parameter that is usually (for historic reasons) 
used to indicate the speed of decay of the series' 
autocorrelation function is the Hurst parameter
– H=1- β/2 and therefore ½<H<1. As H approaches unity, the 

degree of self-similarity increases. 
– Simplified: To test self-similarity of a series: Is H significantly 

different from ½?
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Hurst parameter
• There are several theoretically sound
estimators for Hurst parameter

• However, they may disagree when
applied to same data

• Differing views on how to preprocess
data
– At least aim to 

• remove mean, 
• trends, 
• best polynomial fit (of high order, like 10)
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Hurst parameter: Variance-time
• Variance-time relation

– Calculate the variance of series as you
take more and more of the series into the 
calculation

– Plot variance-time relation
• Log-log plot
• A straight line with slope –β>-1 indicates self-
similarity

• Estimation is made in time-domain
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Hurst parameter: R/S-method
• R/S: Rescaled Range

– Relies on rescaled range (R/S) statistic growing like a power 
law with H as a function of number of points n plotted.

– The plot of R/S versus n on log-log has slope which 
estimates H

– Process:
• Divide a timeseries into K non-overlapping blocks, blocks vary from
1…n

• Compute R/S(n), the rescaled adjusted range for all n
– R is the range of the data in the block n, S is the sample variance of the 

data in the same block.
– The R/S values plotted against n should have nH relation.
– In log-log space the slope of the R/S vs. n –line is H

• Estimation is made in time-domain
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Hurst parameter: Periodograms
• Fact: Spectral density of self-similar 
processes obeys power law near the 
origin
– The slope of the power spectrum of the series as frequency 

approaches zero (and is near origin)
• The periodogram slope (in a log-log plot) is a straight line with 
slope 1-2H close to the origin (10% of the lowest frequencies)

• Estimation made in frequency domain
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Other methods for estimating H
• Analysing wavelets

– Generalized Fourier-transform
• Whittle estimator focuses on making
observations near zero frequency

• Both of these methods are in the 
frequency domain
– And all of these are dealt with in advanced

courses ☺
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Meaning of self-similarity
• A high value of Hurst parameter oftenincreases delays and packet loss in a network.
• If buffer provisioning is done using the assumption of Poisson traffic then the network will be underspecifed.
• The Hurst parameter is a dominantcharacteristic for a number of packet trafficengineering problems.
• The origins of LRD are uncertain but the mostlikely cause seems to be the aggregation of file transfer processes.
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All is not as it seems…
• Trends and periodicities or other 
corrupting noise may be mistaken for 
LRD.
– All techniques to find H are somewhat 

vulnerable to addition of short-range 
dependent data.

• A researcher (and a student ☺) relying 
on a single measure of the Hurst 
parameter is likely to draw false 
conclusions.
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Applications for self-similarity studies
• Main idea is to statistically analyze traffic process

– Build traffic models for simulators
– Be able to analytically handle traffic

• Is Poisson model enough?
– Recent studies show that using Poisson-modeled traffic

significantly overestimates network performance
– Self-similar models perform better
– Multi-fractal models are even better

• Multi-fractals dealt with in advanced courses
• However, 

– Self-similarity analysis is at the moment just ”interesting”
– Practical applications are few and far between (in 

networking)
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Explanations for self-similar behavior
• Open loop –models (edge oriented)

– Connections arrive at random
• Files have size, network has rate

– Heavy-tailed distribution of file sizes causes LRD
• Are filesizes really heavytailed?

• Closed loop –models (network oriented)
– 90% traffic is closed loop (TCP)

• Transmission of future packets depends up on the faith of the 
previous packets -> correlation independent of file size

• Mixed models
– Protocol functionality is layered (TCP->IP->Ethernet)
– Different layers act on different timescales -> multiple
timescales (and self-similarity)
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Measurement analysis summary
• Correlation

– Cross- and auto
– Significance
– Intrepretation

• Basics of timeseries analysis
• Self-similarity

– Methods of how to determine
• R/S, Variance-time, Periodograms
• Causes, consequences


