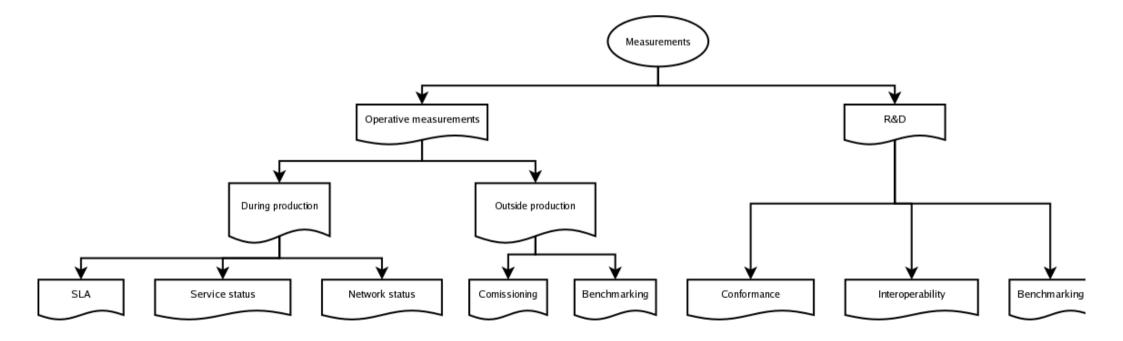


Lic.(Tech.) Marko Luoma (1/26)

S-38.3183: Internet Traffic Measurements and Measurement Analysis


Lecture 11: Benchmarking routers and networking subsystems

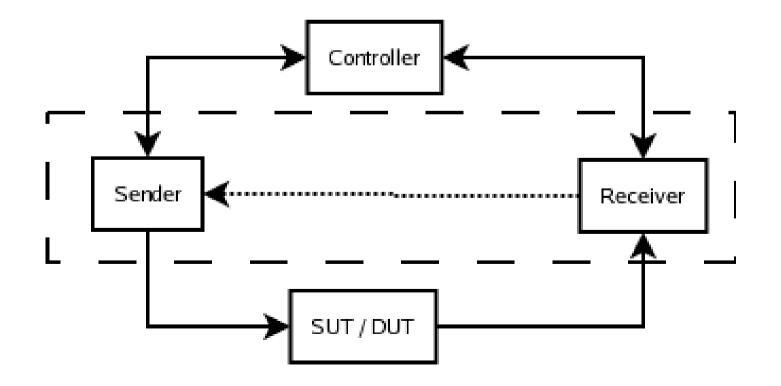
Lic.(Tech.) Marko Luoma (2/26)

Different Measurements

• Measurements are performed for different reasons and goals

Lic.(Tech.) Marko Luoma (3/26)

R&D Measurements


- Measurement target varies depending on the stage of development
 - Algorithm
 - Scheduling, address lookup, route calculation
 - Protocol
 - OSPF state-machine, TCP state-machine
 - Device
 - Ethernet switch, IP router
 - Network
 - MPLS, IP, WiFi

Lic.(Tech.) Marko Luoma (4/26)

Generalization

• Generalization of R&D test flow with test-systems

Lic.(Tech.) Marko Luoma (5/26)

Approaches

- White-Box
 - System and its state can be observed during test procedure
 - System is well known and test flow can be designed to meet system characteristics
- Black-Box
 - System and its state cannot be observed during test procedure
 - System and its transfer function is not known
 - System state is approximated based on the input/output relationship

Lic.(Tech.) Marko Luoma (6/26)

Black-Box

- Common approach to determine performance of network subsystems
 - Controlled injection of test vectors
 - Packets, requests, etc
 - Operation of network subsystem is determined based on the response to the injected test vectors
 - Benchmarking of different systems

Lic.(Tech.) Marko Luoma (7/26)

White-Box

- Common approach in development of new protocols and algorithms
 - Tested algorithm contains suitable debug code to inject its internal state to external device
 - Causes extra processing which influences the performance
 - Discrepancies in real-time execution
 - External test vectors are injected to the system
 - Systems state and response are analyzed together

Lic.(Tech.) Marko Luoma (8/26)

White or Black

- In general knowledge of internal state helps in analyze of results
 - Large systems provide overwhelming amount of internal data
 - Important information is easily missed
 - In operative systems internal state analysis is restricted to non-realtime operations
 - Debug flags cause extra processing
- Black-Box analysis requires carefull inspection of measured system
 - Causality of injected test vectors

Lic.(Tech.) Marko Luoma (9/26)

Benchmarking

- Common measurement is benchmarking
 - Each system has operative boundaries
 - What is the performance of tested system in
 - Normal operative conditions
 - System is injected with vectors that conform protocol specifications
 - Abnormal operative conditions
 - System is in transient state caused by
 - » External influence
 - » Test vectors that cause transients

Lic.(Tech.) Marko Luoma (10/26)

- Enable all protocols to be tested and conduct all testing with no further configuration of protocols.
 - This gives baseline performance.
 - A lot of protocols have variable timers which can be tweaked to tune in the performance.
 - This may lead optimized performance in test conditions
 - In real network these timer values may cause unstable network ,-)
 - Fine tune parameters after baseline testing
 - Apply only values which YOU know to work in real network.

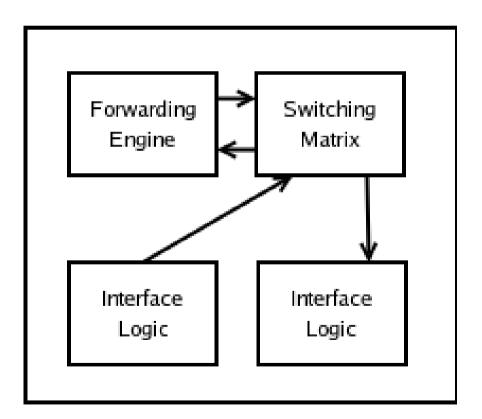
Lic.(Tech.) Marko Luoma (11/26)

- Take into account architectural differences of devices
 - Pizza-Box vs Modular system
 - Pizza-Box devices are usually brought out by integrating interface module and management module into closed chassis.
- Performance of these two is different when packets cross the backplane.
- In general:
 - The best results come from packets destined to same interface module
 - The worst results come from packets destined to other modules.
- Again depends on internal flow of packets ;-)

Lic.(Tech.) Marko Luoma (12/26)

- Depending on the device type and architecture
 - Make sure that
 - System is reachable over the management interface throughout the testing procedure
 - Processor based systems are eager to stop communicating to outside world during the heavy load
 - There are valid control protocol adjacencies
 - It is common situation that routing protocol stops functioning but FIB contains entries that were there before crash

Lic.(Tech.) Marko Luoma (13/26)


- Pick up the devices for testing from the shelves of a shop
 - Usually this can not be done with HC networking gear
 - At least update the software to a version that you know to be commonly used
 - Eliminates 'special price only for you versions' that are boosted to provide good results on your test cases
- Do not use IMIX address distributions as such
 - Device may be optimized for common test pattern

Lic.(Tech.) Marko Luoma (14/26)

Benchmarking Ethernet Switch

- Forwarding process
 - Frame is received from the interface
 - Frame header is forwarded to forwarding engine
 - Forwarding engine makes delivery header
 - Frame is delivered through switching matrix to outgoing interface
 - Frame is served to the link

Lic.(Tech.) Marko Luoma (15/26)

Constraints

- Processing power of interface logic
 - How many packets per second (pps) interface logic is able to handle
- Processing power of forwarding engine
 - How many pps FE is able to process
 - Lookup delay from the address database
- Capacity of switching matrix
 - How many bps switching matrix is able to handle

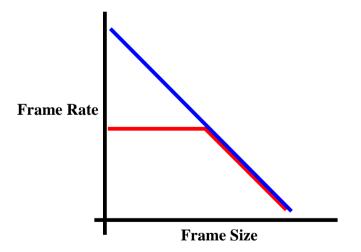
Lic.(Tech.) Marko Luoma (16/26)

Device dependent constraints

- Construction of device provides additional constraints
 - Pizza-box approach
 - All the logics are integrated into single blade
 - Modular approach
 - Functionalities are divided to different modules
 - Management module
 - Interface module
 - Processing module
 - Internal interface capacity vs sum(external interface capacities)
 - Packet flow within chassis (hot-spots?)

Lic.(Tech.) Marko Luoma (17/26)

Frame Sizes


- Minimum size from UDP Echo request frame
 - IP header (20 octets)
 - UDP header (8 octets)
 - MAC level header is required by the media in use
- Maximum frame size is determined by the limitations of the MAC
- Generally at least five different sizes containing minimum and maximum
 - Frame sizes to be used on Ethernet
 - 64, 128, 256, 512, 1024, 1280, 1518

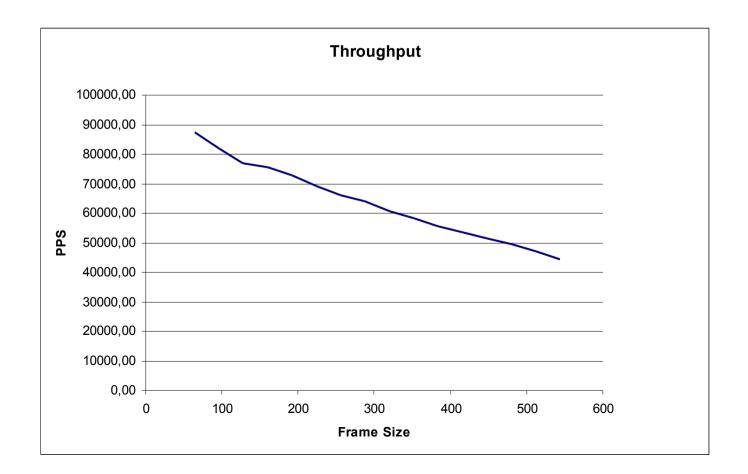
Lic.(Tech.) Marko Luoma (18/26)

Analyzing Results

- Constraining element can be analyzed from the results
 - Blue line: Switching matrix or sum of interface capacities is restricting the operation
 - Red line: FE or interface logic is restricting the operation to certain extend after which Blue restrictions are valid again.

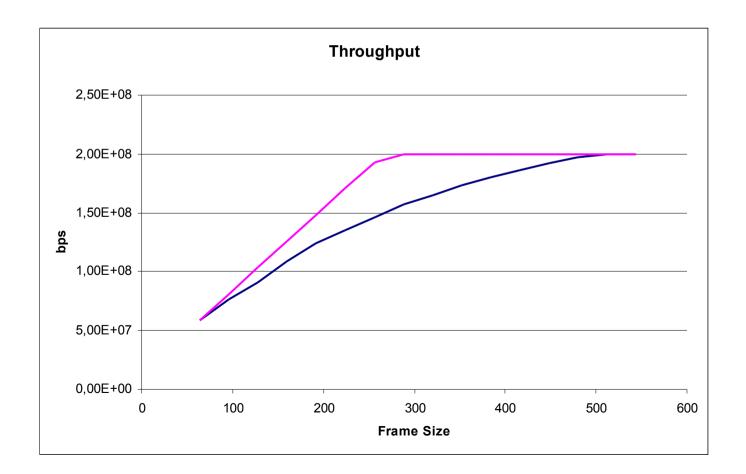
Lic.(Tech.) Marko Luoma (19/26)

Puzzle


- These are benchmarking results from a router
 - PC hardware
 - Linux Debian OS
 - 3 x 10/100
 - 2 x 1GbE
 - Connected:
 - 10/100 management
 - 2 x 10/100 test device

- Test methodology
 - Zero loss frame rate
 - Binary search with 1% accuracy
 - Frame size 64B +N*32B
 - Accelerated testing
 - 15s test period
 - too short for comprehensive testing
 - L2/L3 address discovery between iterations

Lic.(Tech.) Marko Luoma (20/26)


Puzzle

Lic.(Tech.) Marko Luoma (21/26)

Puzzle

Lic.(Tech.) Marko Luoma (22/26)

Conformance measurements

- Conformance measurement is based on the analyzes of the DUT against formal definition of operation
 - Measurement is done with test system that fully conforms the protocol specifications
- Measurement reveals whether the system conforms the abstract protocol specification
 - Majority of protocol specifications allow some room in implementation
 - Mandatory part (conformance requirement)
 - Optional part

Lic.(Tech.) Marko Luoma (23/26)

Interoperability measurement

- Interoperability measurements are done against other manufacturers devices
 - Conformance measurement is only abstract verification of device operation.
 - Interoperability measurement reveals differences in different vendor implementations
 - What optional elements are implemented
 - Does DUT operate in multi-vendor environment
 - Only internal diagnostics available
 - What does the device tell about the network status

Lic.(Tech.) Marko Luoma (24/26)

Operative Measurements

- These measurements are done on real network
 - Cold network
 - No customer traffic is delivered in the network (real or virtual)
 - Comissioning the network
 - Benchmarking the network
 - Hot network
 - Customer traffic is delivered during the measurement
 - SLA measurement
 - Network status measurement

Lic.(Tech.) Marko Luoma (25/26)

Comissioning

- Comissioning is probably the least formalized measurement type
 - New network is build up and delivered to the customer
 - Before actual delivery, network is measured for the performance
 - Packet delivery
 - Routing stability
 - Service operation
 - VPN route propagation
 - Multicast delivery

Lic.(Tech.) Marko Luoma (26/26)

SLA Measurements

- Service Level Monitoring is important aspect for service provider
 - SLA contains measurable quantities for the offered service
 - These quantities are measured either with passive or active method
 - Active measurements are based on the probes which are used to determine delays and capacities
 - Passive measurements are based on
 - Sniffing on the traffic from different locations with time synchronized
 - Adding trailers to packets through the network