Exercise 1
for S-38.3183 - Spring 2006

Mika Ilvesmäki
Helsinki University of Technology
Networking Laboratory
P.O. Box 3000
02015 TKK
Finland
mika.ilvesmaki@netlab.tkk.fi

Abstract. Deadline for this exercise is 24.3.2006. To get your report into
the grading process it must be submitted via email to s383183-exercise@netlab.tkk.fi.
No returns in paper format or otherwise are allowed. The reports must
be in pdf-format and sent as attachments to the email message. Do not
forget your name and study book number from your report.

1 Introduction
The first exercise introduces you to the trace files and how to get information
out of them.

2 Problems
All your answers should also contain the scripts/command line with which you
created your answers. Remember to comment (discuss) the results.

2.1 Traces
The traces are available from
http://www.netlab.tkk.fi/opetus/s383183/k06/exercises/traces/
Remember to read the readme.txt file. Note also, that the original files are big
(and authentic) so you may need additional space in your work directory (use
scratch- and tmp -directories). Catenate from the zip-files when possible.

2.2 Packet files
Download one of the packet files and determine the following properties:
- length (in time) of trace
- Number of packets
- Number of flows (two methods)
- Number of TCP and UDP packets
- Number of TCP and UDP flows
- Number of different Sport/Proto and Dport/Proto combinations
Extra work: If you have the extra time determine also the number of different [Sport,Dport] pairs.

2.3 Flow files
Download one of the flow files and determine the following properties:
- How many flows are there?
- How many single packet flows?
- How many TCP and UDP flows
- What is the share of bytes in TCP, how much in UDP?
- What share of the bytes of all bytes / TCP bytes belong to web-traffic (port 80, proto 6)?
- How many (the share) of the flows originate from a Web-server (port 80, proto 6)?
- How many (the share) of the flows are destined to a Web-server?
- What is the longest flow in length (time)?
- What is length of the shortest 2-pkt flow

3 Method of working
The reports are written solo. However, a large part of the work that needs to be done might be done quicker and with better results if performed in groups. Therefore, the following is strongly suggested:
- As you begin your work, form groups of three to four students. It would be best if each member of the group would have a different data set to be analyzed to avoid the temptation to copy all the results and to enable the possibility to learn from other data sets.
- Work together as you see fit. If someone in the group is good in making Matlab-scripts let him/her be the one to do the actual coding. If someone else has the ability to quickly form an overall view of the problem and the steps to solve it, use this person’s ability. Someone might be more familiar with the typesetting environment you are using. The overall goal is to learn to share your strengths and absorb from other people’s work what your own skills lack. However, everyone is required to write their own report and draw up their own conclusions (after discussing about them within the group).
- The final report of each person must contain a section titled "Acknowledgments" where everyone who has influenced the report must be mentioned by name and their individual respective contribution. Your own work should also be clearly defined and reported. It must be stressed that the quality of group work is one key factor of the grading of your work.
- Be advised that more names and more collaboration is not a bad thing. Be also advised that working totally by yourself may lead to rejection of the report. Naturally, plagiarism and 1-to-1 copies of other’s reports are considered cheating and lead to appropriate consequences as defined by the Department of Electrical and Communications Engineering and Helsinki University of Technology.
It is recommended, although not mandatory, to change your working groups during the course. An ideal situation would see you change groups for every exercise.

4 Report structure

- Start with Introduction: Introduce the problem, the given input data
- Present the mathematical basics of your solution. Type out the equations and only the equations you need. For instance, do not just tell that you are going to calculate the mean. Instead, state clearly that you are going calculate the mean defined as
 \[\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \] (1)
- Present the complete mathematical solution and process to obtain your results.
- Include the code, command lines and scripts so that anyone can do the same experimentation with their own data and thus verify or contradict your results.
- Present the results in clear figures and tables. Try to avoid complex figures and aim for simplicity. If you know what you are looking for in the data your pictures will usually clearly indicate this. If you’re not sure what you’re after, your figures and tables will usually reveal this. When you include a figure or a table, be absolutely sure that you refer to it (and explain it) in the text.
- As a final part of your work make conclusions based on the results. If you see causality somewhere, be sure to state it. Be critical and be honest.
- In the Acknowledgements-section you should clearly state all those, by name and contribution, who have contributed and influenced your work. Very few things in the world are accomplished completely alone.
- As a final part of work state all your references and sources of information. The list of references should enable the reader to get their hands on the same material and to verify that you’ve interpreted the sources correctly.

The report should be as short as possible. Be concise and document all necessary information. However, omit redundancy and avoid unnecessary verbosity. No strict page counts are given. Enough is enough.

5 Grading

The reports are graded either fail, pass or pass with distinction. Reports graded "fail" are rejected and need more work to be passed.

To pass with distinction, the following elements must be present in the report:

- Clear and logical structure in the report.
– Proper language and ease of reading. Note: You are recommended to use English, however, Finnish and Swedish are also accepted. Nevertheless, the get the most out of this course, please use English!
– Clear, and to the point figures. Clear and accurate presentation of the results.
– The problem needs to be clearly defined and properly solved.
– The procedures (scripts, command lines) with which the solutions are obtained need to be clearly documented. The reader of the report has to be able to duplicate the work.
– Clear, concise and to the point conclusions and discussion based on the results are mandatory.
– The work flow and time spent needs to be documented, and other people’s contribution clearly identified in the Acknowledgement-section. Also all sources of relevant information (article, program documentation etc.) regarding the solution of the problem need to be presented in the References-section.

5.1 Return of the exercises

Deadline of this exercise is March 24th at 4pm. To get your report into the grading process it must be submitted via email to s383183-exercise@netlab.tkk.fi. No returns in paper format or otherwise are allowed. The reports must be in pdf-format and sent as attachments to the email message. Do not forget your name and study book number from your report.

6 Acknowledgements

The author would like to thank CSC - the Center of Scientific Computing in Finland - for providing access to Funet network and for computing and archive resources and Lic. Sc. Markus Peuhkuri for his kind help in preprocessing the traces.