

Integrated Services in the Internet – part II: How it works, or RSVP for QoS provisioning

Lecture for QoS in the Internet –course 22.11.2007 Mika Ilvesmäki

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Knowledge requirements

- Understand the concept of scalabillity.
- Understand the concepts of, and difference between signaling and routing.
- Understand what a protocol is and for what it is meant.
- Understand that a protocol may function outside of the scope it was originally intended for, doing stuff it was not originally designed to do.

Knowledge gain for this lecture

- · After this lecture you will
 - Be able to explain RSVP design goals, actual design, RSVP properties and shortcomings in the design
 - Be able to explain how RSVP functions and what different types of reservations are and how they differ from each other
 - Be able to explain alternative uses for RSVP and RSVP-TE

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

RSVP in a nutshell

- In IntServ, applications have to set up a reservation state in IntServ routers before transmitting traffic
 - RSVP is a signaling protocol for applications to reserve resources by setting up state in hosts and routers
 - · but not necessarily only in IntServ
 - RSVP is a state establishment and maintenance protocol (and a signaling protocol of sorts).

RSVP design goals

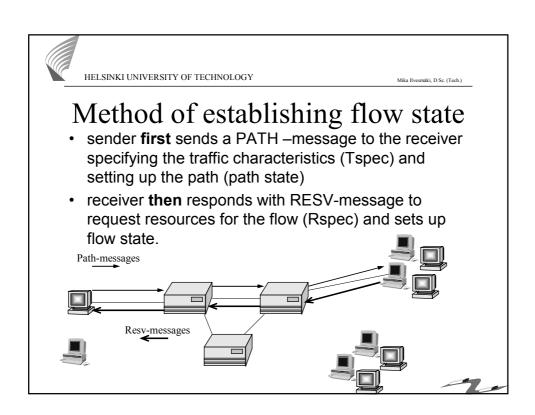
- Heterogeneous receivers
 - Receiver oriented reservation style
- Dynamic membership
 - Data transfer is not controlled by RSVP
- Sharing of resources
 - Reservation styles (WF, FF, SE)
- Adaptation to network dynamics
 - Soft-state approach
- Independence of architectural components
 - Flow specs, admission control, packet classification, scheduling, routing
- Controllable (and modifiable) protocol overhead
 - Refresh period parameter

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

RSVP design

- Not a routing protocol
 - designed to operate with current and future routing protocols
- Policy independent
 - RSVP is independent of the service architecture
- Soft state
 - times out unless state is refreshed
 - allows for state modification (original and refresh messages identical)
- Transparent operation through Non-RSVP clouds
- Reservations may be shared or not
 - Remember IntServ/RSVP history in multicast sessions

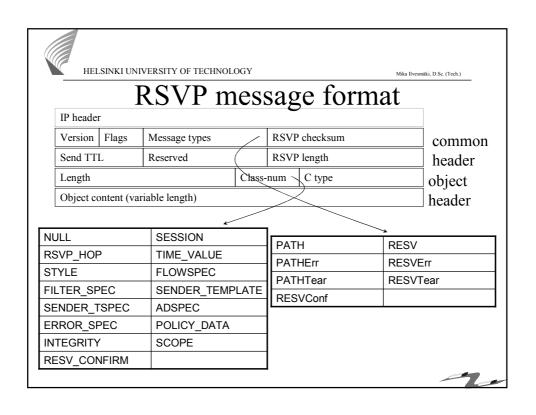


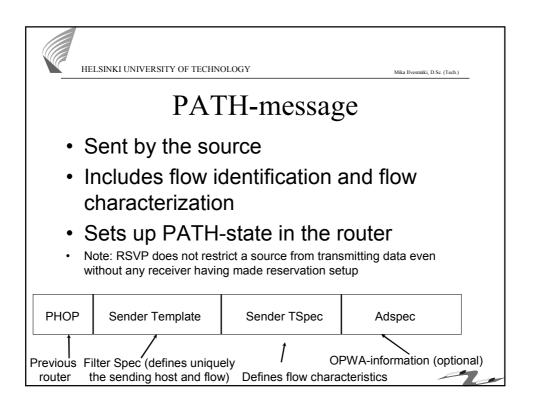
RSVP properties

- End-to-end
 - Traffic specs and resource requests from end host applications
- · Per-flow method of signaling
 - fine-granularity state set-up in the routers
- Originally intended for IP multicast
 - receiver-oriented setup
 - reservations are one-way only

Soft state

- RSVP sends (by default) PATH and RESV messages periodically
 - If states are not updated regularly they time out.
- PATH refreshes make it possible to adapt to path/(multicast distribution tree) property changes
- RESV refreshes may incorporate changes altered reservations -> adaptive QoS
 - Old reservations die out, no additional state maintenance


HELSINKI UNIVERSITY OF TECHNOLOGY


Mika Ilvesmäki, D.Sc. (Tech.)

RSVP messages

- Sent as raw IP (protocol 46)
 - specified to function also with UDP
- PATH
 - sent downstream along the data path installing path state
- RESV
 - reservation requests sent by the receivers

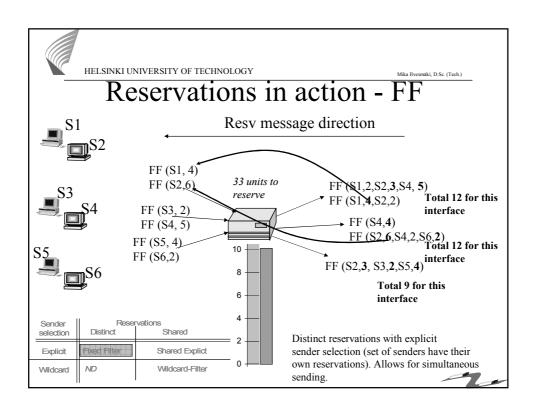
- RESV-message
 Sent by the receiver to reserve resources
- · Contains the flow characterization and filter specification (reservation type, WF, FF, SE)
- · Sets up RESV-state in the router
- · Flowspec may include
 - Tspec (both Guaranteed and Controlled-load)
 - Rspec (only in Guaranteed service)

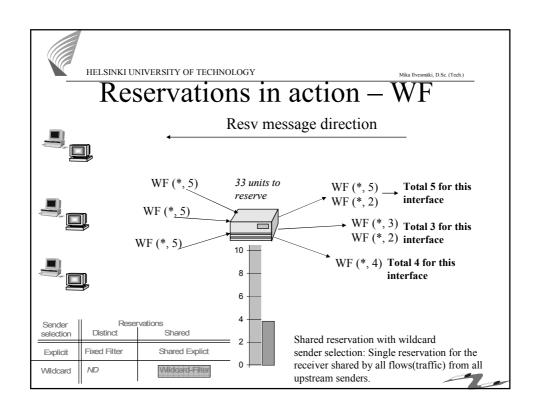
Flowspec	Filter Spec	
Define the state of the state o	Define a flevid	
Defines flow characteristics that will be requested from the routers	Defines flow id (or sender/senders)	7

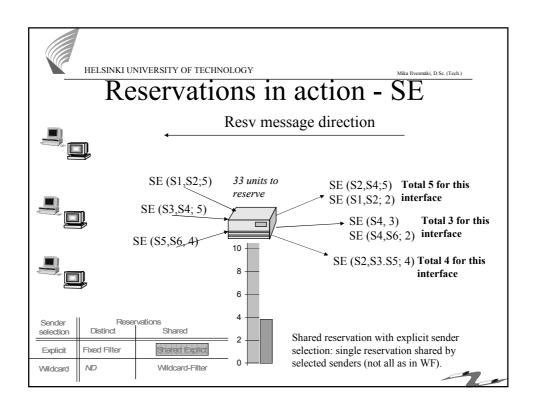
Reservation types

- Three reservation types are defined (and carried in RESV-messages)
 - Wild-card filter
 - Fixed-Filter
 - Shared-explicit
- WF and SE are designed for multicast

Res	Reservations	
n Distinct	Shared	
Fixed Filter	Shared Explict	
nD ND	Wildcard-Filter	
	Distinct Fixed Filter	


7

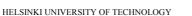



Reservation merging

- · Reservations may be shared or merged
 - Depending on the reservation type and possible only within same type
 - router calculates the filterspec and flowspec to be sent to previous hop(s) according to reservation type
 - Reservation messages (RESV) propagate only as far as reservation request meets an existing distribution tree with sufficient resources. (Reservation merged).

Adspec

- optional object in the PATH-message
- · Consists of
 - Default General parameters
 - Guaranteed Service fragment
 - Controlled Load Service fragment
- advertise receivers the characteristics of the end-to-end path


HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Adspec – Default general parameters

- General descriptive parameters used to characterize the QoS capabilities of the path of the packet flow (RFC 2215)
- · Checked and re-set by every router on the path
 - NUMBER OF IS HOPS
 - · IntServ Hop Count
 - Minimum Path Latency
 - speed-of-light + packet processing limitations
 - Path bandwidth
 - 1 byte/s ... 40 Terabytes/s
 - Global break bit
 - · the break bit indicating a break in the QoS chain
 - set by the device that is not IntServ compliant or knows such devices to exist in the path
 - · cleared when Adspec is created by the sender
 - PathMTU

Adspec – Guaranteed Service fragment

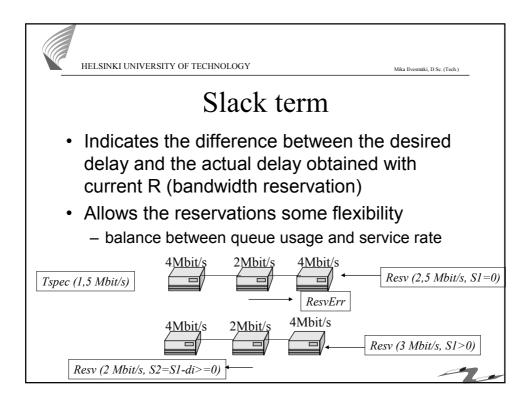
- · Ctot, Dtot, Csum and Dsum
- · Guaranteed Service break bit
- Guaranteed Service General Parameters
 - overrides the values in default general parameters

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Adspec – Controlled load service fragment

- · Controlled-load service break bit
- Controlled-load service general parameters
 - overriding those presented in default general parameters



OPWA

- One pass with advertise
 - Sender includes Adspec in the PATH-message
 - with the aid of Ctot and Dtot the receiver is able to determine the path characteristics and form a more accurate RESV-message
 - receiver includes R and S (the slack term) in the RESV-message Rspec
 - Rspec includes also reservation type, filter specification, flow specification with Tspec and Rspec
- Without Adspec we have OP (One pass) and the RESV-message includes only the Tspec

Confused?

- PATH(Tspec) describes how the traffic will behave
 - PATH will also establish the route
- The receiver calculates (maybe based on Adspec) what kind of reservations have to be made and puts this reservation request into RESV(Rspec)
 - RESV will make the reservations on the route

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

Alternative uses of RSVP and future issues

- RSVP-TE
 - RSVP with traffic engineering extensions
- Hierarchical RSVP
 - reserve large pipes, classify packets to pipes at the edge.
 - reduction of reservation state, fewer choices for packet scheduling but still looking at the source and destination
- Accounting and billing need to be integrated
- Authentication issues need to be resolved

Using RSVP-TE for label distribution in MPLS

- Label identifies (explicitly) a route, not just the destination (and is independent of the source and the destination).
- · New functions:
 - Label distribution
 - Explicit routing, rerouting, route tracking
 - Bandwidth/Resource reservation
- New objects
 - PATH-message
 - LABEL_REQUEST
 - EXPLICIT_ROUTE
 - RECORD ROUTE
 - SESSION_ATTRIBUTE
 - RESV-message
 - LABEL
 - RECORD_ROUTE

HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki, D.Sc. (Tech.)

RSVP-TE in action

- Addition of Label_request –message in RSVP PATH-message
 - Downstream label allocation
- Addition of Label –object to be carried in RSVP RESV-message
 - Labels propagate upstream in the RESVmessage
- LSPs are set up with FF-reservation

RSVP summary

- Method for an application to specify desired QoS-level to network hop-by-hop
- RSVP is used to establish/change state in network elements (routers), aka Signaling.
- Multicast friendly, receiver-oriented.
 (receiver makes the reservation requests)
- Single direction reservations.
- Does not calculate resource requirements.
 (done at the edges).

