S-38.3180: Quality of Service in Internet

Lecture I: Differentiated Services

15.11.2007

Today's Topic

- This part of the lecture is about Differentiated Services architecture

Internet today

- Current Internet:
 - ‘Best Effort’-service
 - Equal opportunities (competitive resource sharing)
 - Equal miseries (uncontrolled delays and packet losses)
 - Ideology: network is used with good intent
 - Reality: as fast and soon as possible
 - Customer model
 - Access to the ‘Internet’
 - Possibility to use shared information resources

Best Effort Router

- Packets are forwarded based on their destination address
- Scheduling
 - FCFS
- Queue Management
 - RED
- Equal treatment of traffic
Differentiated Services

- Is combination of mechanisms presented in earlier lectures
- Physically, nothing more than Best Effort
- Logically, number of parallel Best Effort networks
- Packet is destined to one of the parallel networks
 - Packet per packet processed quality of service
 - Connectionless architecture is still preserved
- Each parallel network uses same routing topology (not necessarily)

Differentiated Services

- Identification of which parallel best effort network packet is destined, is coded in each packet
 - IPv4 ToS field is reformatted
 - No routing nor precedence
 - Generic class identifier

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>4</td>
</tr>
<tr>
<td>Type</td>
<td>4</td>
</tr>
<tr>
<td>Protocol</td>
<td>0</td>
</tr>
<tr>
<td>Length</td>
<td>20</td>
</tr>
<tr>
<td>Identification</td>
<td></td>
</tr>
<tr>
<td>TOS</td>
<td>DSCP</td>
</tr>
<tr>
<td>Flags</td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td></td>
</tr>
<tr>
<td>TTL</td>
<td></td>
</tr>
<tr>
<td>Source Addr</td>
<td></td>
</tr>
<tr>
<td>Destination Addr</td>
<td></td>
</tr>
<tr>
<td>Options</td>
<td></td>
</tr>
<tr>
<td>Checksum</td>
<td></td>
</tr>
<tr>
<td>PAR</td>
<td>PAR</td>
</tr>
</tbody>
</table>

DiffServ Router

- Packets are forwarded based on the destination address and class information (DSCP)
- Scheduling and queue management are done based on the class information
 - Each coded DSCP value has own resource policy

DiffServ Router

- DiffServ router has one additional element in forwarding path compared to basic Best Effort router:
 - Controller
- Control plane of a DiffServ router has one extra element ie policy controller, which is responsible of internal management and configuration of conditioner and scheduler
DiffServ Conditioner

- Traffic Conditioner is constructed a set of:
 - Classifiers
 - Responsible of logical separation of packet streams
 - Meters:
 - Responsible of rate metering of logical streams
 - Markers:
 - Responsible of actions based on metering results and predefined thresholds

DiffServ PHB

- Per hop behavior is block which contains queue management methods required to implement desired service:
 - Queues
 - Queue space management algorithms
 - Schedulers
- Black Box transfer function for individual device

DiffServ terminology

- Workload in DiffServ is divided between two inherently different types of routers:
 - Edge routes
 - Core routers
- Edge routers are on the domain edge interfacing:
 - Customer
 - Other ISP
- **Edge routers** are responsible of conditioning actions which eventually determine the logical network where packet is to be forwarded

DiffServ terminology

- Logical network is concatenation of PHBs which interact together.
 - These logical networks have target service called per domain behavior (PDB).
 - Black Box transfer function of a domain
- Target service is loose definition for the goal of the logical network when it is provisioned and configured in a predefined way.
- Edge router chooses PDB for each packet which comes from the customer:
 - Marks packet with DSCP of PHB used to implement PDB
DiffServ

- Service decision in edge router can be based on:
 - Metering result
 - Rate based
 - Predefined set of filters
 - IP address ie customer
 - TCP/UDP port ie application
 - User request
 - Precoded DSCP
 - RSVP signaling

- Core routers do nothing but forwarding of packets based on the extra information in DSCP field of packets
- Requires
 - Classifier to detect DSCP fields
 - PHB to implement forwarding behaviors

Core routers do nothing but forwarding of packets based on the extra information in DSCP field of packets.

Service classes

- Differentiated Services is aligned between Best Effort and IntServ
- There is counterpart for each IntServ service class in DiffServ
 - Guaranteed Service <-> Expedited Service
 - Controlled Load <-> Assured Forwarding

Expedited Forwarding (EF) [RFC2598]

- Leased line emulation
 - From destined ingress point to destined egress point
 - End-to-end service with
 - Low loss
 - Low latency
 - Low jitter
 - Assured bandwidth

- Service commitment is only assured
 - Resources inside EF class are shared
 - Amount of other EF traffic influences to the value of delay, jitter and loss
 - Path is freely chosen
 - Delay constraint can not be held as the delay of paths are inherently different
 - No reservation is done
 - Provisioning is in the key role
EF

- **Leased Line**
 - Dedicated resources
 - Full isolation
 - No room for overflow
- **Virtual Leased Line**
 - Shared resources
 - Partial isolation
 - From other than leased line traffic
 - Can accommodate overflow
 - Vague service guarantee

- Control of service guarantee
 - Access control
 - Rate control
 - User control
 - Provisioning
 - At least sum of contracted rates is allocated to EF traffic
 - High priority in the network
 - Scheduled ahead of other traffic
 - Starvation of lower priorities?
 » Only small fraction of total link capacity (10-30%)
AF

- Construct services based on previous aspects
 - Many dimensions of freedom
 - How to make sure that system can not be manipulated
 - User control vs Network control

<table>
<thead>
<tr>
<th></th>
<th>Best-Effort Service</th>
<th>Differentiated Service</th>
<th>Integrated Service</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Connectionless</td>
<td>Aggregated state</td>
<td>Connection-oriented</td>
</tr>
<tr>
<td></td>
<td>Local session state</td>
<td>End2End session state</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Session signaling [RSVP]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Admission control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leaky-bucket traffic control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CoS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Per-flow QoS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Per-class WFQ(^1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Per-class and/or per-flow WFQ</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Border routers may keep track individual sessions if required by policing or multifield classification.
\(^2\) Scheduling depends on per hop behavior [PHB]. Minimum requirement is FIFO with multilevel RED.