Traffic management

Lecture for QoS in the Internet – course
S-38.3180
8.12.2005 Mika Ilvesmäki

Contents

• Traffic management
 – Terminology and system structure
• Traffic management components
 – Classification
 – Traffic handling mechanisms
 – Bandwidth management
 – Policy systems
 – Monitoring
 – Billing
• Traffic management applied in DiffServ
Knowledge gain for this lecture

- After this lecture you will understand
 - What is meant by traffic management
 - What is policy and the architecture of policy systems
 - Traffic classification and differences between user based and network based traffic
 - Bandwidth brokers and how they might be used in network
 - General aspects of billing
 - How and in what way DiffServ may be able to provide end-to-end service level

Traffic management

- TM systems consist of a set of high-level rules that are propagated out to enforcement points using a policy system
 - Policy must be enforced to ensure that the users are behaving properly
- Network should classify, handle, police and monitor the traffic
 - Operator should also be able to bill the customer
Terminology (RFC 3198)

- Policy is either:
 - A definite goal, course or method of action to guide and determine present and future decisions. "Policies" are implemented or executed within a particular context (such as policies defined within a business unit).
 - a set of rules to administer, manage, and control access to network resources [RFC3060].

- Policies are built with policy rules
 - Policy rule is a basic building block of a policy-based system. It is the binding of a set of actions to a set of conditions - where the conditions are evaluated to determine whether the actions are performed [RFC3060].

- Policy condition is usually a filter
 - A set of terms and/or criteria used for the purpose of separating or categorizing. This is accomplished via single- or multi-field matching of traffic header and/or payload data. "Filters" are often manipulated and used in network operation and policy. For example, packet filters specify the criteria for matching a pattern (for example, IP or 802 criteria) to distinguish separable classes of traffic.

Policy system structure

- Policy systems as such are pretty straightforward
 - Policy clients at routers ask the policy parameters from the policy server
 - Policy servers get the policy data from the information store

- Key question rarely given thought: How do you create the policy rules and the corresponding actions?
Where’s the info on the packet contents?

- Packet header information
 - Layers 1 and 2 do not contain any information on packet content
 - Layer 3 (IP) identifies the sending source and receiving destination the upper layer 4 protocol (TCP/UDP)
 - Oversimplification: who sends packets where
 - Layer 4 (UDP/TCP) identifies the port numbers used at source and destination
 - Oversimplification: what application is used
 - Source identifies the application that originates the packet and the destination tells us where the packets are headed
- Layers 3 and 4 are the first ones that contain any information on the application that the user is using to create packets in the network.
 - Aim is to limit the processing on the packet

Traffic classification

- The main idea is to determine the packet class
- Based on experience and scalability studies, the easiest way to bring service differentiation into the Internet is to use a limited amount of traffic classes (DiffServ).
 - But how many? 2, 3, 8 or more?
- Different traffic classes represent different priority levels
Design guidelines for classification

• Plan for scalability
 – For instance, do not associate port numbers to QoS classes
 (-> potentially 65535 classes), instead bind the port numbers
to DiffServ Codepoints (DSCP), for instance.
 • Port number have nothing to do with QoS identification
 whereas DSCP is designed just for that
• Do not imply policy within design
 – Use as value-neutral design as possible and leave room for
 freedom of choice
• Preserve end to end principle: "If possible do
 everything at the edges."
 – Profiling and marking should be done and used at the edges
 of the network
 • although measurements may, of course, be done anywhere in
 the network

Traffic classification: User decisions

• Users may inform the network on the service
 level (class) of the packet.
 – resource restrictions -> admission control
 – malicious users may want to misuse the network
 capacity
 – users want to measure the service level they get -
 > added complexity/software/traffic
 – and... do all the users _really_ have the expertise
 to make the decisions?!?
• Users should be required to provide only
 minimum of information on the traffic
 characteristics!
Traffic classification: Network decisions

- Network determines the service level (class) of the packet
 - feedback from the resource usage
 - SLAs do not promise anything absolute in terms of network service
 - AAA (Authentication, Accounting and Administration) guarantees the service levels to appropriate users
- If network decides individual packet treatment it should know what kind of packet it is classifying
 - This requires knowing the application characteristics
 - by examining the packet headers and/or content
 - by information obtained from other network devices that know the packet’s type

Monitoring

- Measurements need to be 2-way
- Passive measurements
- Active measurements
 - May affect the network status
- The measured properties may be sorted, or otherwise analyzed against
 - absolute boundaries (particular packet sizes, certain variance limits)
 - each other (all packets smaller/larger than the average packet size are classified/not classified)
Some classification problems

- **NAT**
 - User-based classification impossible
 - Pre-translation packet marking
- **Stateful traffic**
 - Upper-layer negotiates traffic (FTP)
 - Traffic monitoring
- **VPN**
 - Hides (as does NAT) the “true nature” of the traffic
 - Pre-VPN-entry packet marking

Traffic handling

- **In a device**
 - Shaping and queuing traffic
 - Leaky and token buckets, FIFO, PQ, CBQ, WFQ…
 - RED, WRED etc. for queue management
 - What are the correct parameter values?
- **By path selection (QoS routing)**
 - IntServ and DiffServ do not choose or resolve routes
 - the “best” routes chosen by current protocols are used
 - OSPF, BGP, etc.
 - problems: route oscillation, path capacity
Bringing it altogether: Bandwidth Broker

- Outside intelligence which controls the network provisioning & classification and handling parameter settings
 - Makes possible to offer a kind of end-to-end type-of-service
 - **Domain wide**
 - **Inter-domain**
 - translate domain specific service attributes at the border of two domains (pretty fixed)
 - Dynamically adjust resource requests to the other domain...

BB: Enabling IntServ / DiffServ co-existence

- Bandwidth Broker interprets RSVP messages to modify the domain specific weights and filters
- We need to be able to pass reservation attributes to and from IntServ cloud.
 - IntServ cloud may be
 - Corporation
 - Outbound / inbound traffic is delivered as guaranteed traffic
 - Mapping to DiffServ classes based on policy
 - Other ISP having IntServ as backbone
 - Mapping between IntServ and DiffServ classes

RAR= Resource Allocation Request
Bandwidth Brokers vs. IntServ routers

- Are we rotating things back to IntServ?
 - BB:s require knowledge from the network (offered load, provisioning)
 - By measuring the network
 - By signaling from the users
 - BB:s modify conditioning and forwarding actions of network routers
- What is the difference to the IntServ?
 - If we provide end-to-end service we need fixed routes and resources that at the minimum match the requirements
 - We need state information somewhere
 - Centralized - DiffServ BB:s
 - Distributed - IntServ routers

Protocols for information distribution

- RADIUS
 - Remote Access Dial Up User Services
 - Stateless protocol for authenticating dial-up users
- DIAMETER (extended RADIUS 😊)
 - Extensibility and statefulness
- COPS
 - A client/server model where Policy Enforcement Point (PEP) sends requests, updates and deletes to Policy Decision Point (PDP) and where PDP sends its decisions back to PEP.
 - TCP based
 - Stateful
 - Provides a way to distribute policy configuration to devices
 - No monitoring
Inter-domain issues

- Inter-domain traffic forwarding is based on bilateral or multilateral peering agreements
 - These tend to be rather static
 - Rule of thumb: more money -> more lawyers -> more static
 - However, demand is varying rapidly and therefore more flexible peering agreements are needed
 - We need to break the rule of thumb by defining peering more dynamically
 - Could inter-operator billing be based on the aggregate traffic in the classes and rate of change requests?

Evaluation of the policy systems

- Evaluate the network (element)
 - Use of transmission capacity, architecture dependent router resources (connection setup / class, packet forwarding / class etc.)
- Evaluate the effect on user
 - What applications are classified to priority
 - Relevance, application type, application count
 - How good the user feels?
 - Is she getting her money's worth?
Pricing/Billing alternatives

- Flat rate (even sum/month)
- Usage based
 - received data
 - sent data
 - use of resources (Bandwidth etc.)
- Billing based on user profile
 - Being a member of user group
 - Using certain applications (VoIP-phone vs. Web-browser)
- In practice Internet routers and Internet in general has not been designed to collect and update the network usage of an individual user (scalability)
- Combination of any and all of the above
- How complicated can an Internet bill be so that the user may verify it and accept it?!

Case: End-to-end service in DiffServ

- Obstacles
 - Structure of DiffServ is based on local control (policies)
 - Classification based on the policies at the edge of the network
 - Forwarding based on the policies in the core of the network
 - We can stretch through single domain (ISP) with EF
 - We may stretch through single domain (ISP) with AF
- End-to-end
 - Is not within single ISP
 - It is between source and destination
Case: What customers want...

- Customer is only interested in the **perceived quality**
 - How things are rolling compared
 - Minute ago
 - Year ago
- Customer is not interested in the novel **technology** which is behind the service
- This means end-to-end service quality

What DiffServ offers...

- Differentiated Services is service architecture which allows to build N logically separated Best Effort networks into a single physical network
- Differentiated Services provides tools to offer QoS which is only assured
- Differentiated Services does not provide end-to-end semantics to the services which are built upon it
- End-to-end QoS is only achieved with outside intelligence - like bandwidth brokers
Expedited Forwarding

- 'End-to-end' service
 - Only single domain end-to-end
 - Quality is defined by two constraints:
 • Provisioning
 - Class should be provisioned with enough resources to handle worst case aggregate
 • Sharing
 - No resource reservation for individual flows.
 - Under and overflows possible
 - Timing and delays can not be held or guaranteed

Assured Forwarding

- No end-to-end semantics
 - Service can be deployed
 • Point-to-point
 • Any-to-any
 - Uncontrollable resource usage inside the network
 • Problem of commons
Making AF end-to-end

To make AF end-to-end we need to control resources and offered load hand in hand

- Adjust scheduling (to control resources)
- Reroute some of the classes (to control offered load)
 » Class and constraint based routing

Adjust scheduling by modifying CBQ heuristics:
- If class green is locally unsatisfied and class turquoise is locally unsatisfied but at the scale of the network only class green is unsatisfied we allow only green to borrow.
- Not possible with the logic we have today in DiffServ, because a single router does not know network scale situation (stateless)

A possible solution

- Have intelligence (bandwidth broker) outside the network which would control the scheduling of classes adjust scheduling parameters.

Change \(w_1 \) to 0.4, \(w_2 \) to 0.1, \(w_3 \) to 0.2 and \(w_4 \) to 0
Summary: General model for QoS traffic management

- Differential handling of traffic
 - Explicit reservations or implicit or administrative differentiation
- Making decisions to handle incoming packets
 - Local, preconfigured or on-line admission control
- Packet forwarding
 - Queuing, shaping, discarding etc.
- Removal of obsolete policy information

Final exam 14.12.2005

- Sign in via wwwTopi!
- Exam is in hall S2, starts at 9am.
 - Please check wwwTopi frequently for updates, changes etc.
- Remember to adhere to the deadlines of the exercises.
- Please note that due to technical difficulties (and non-related workload) the course results may not be available before next exam in January.