ATM Switches

Switching Technology S38.3165
http://www.netlab.hut.fi/opetus/s383165

ATM switches

- General of ATM switching
- Structure of an ATM switch
- Example switch implementations
 - Knockout switch
 - Abacus
- Dimensioning example
General of ATM switching

- ATM switches correspond to layer 2 in the OSI reference model and this layer can roughly be divided into a higher and lower layer:
 - higher layer = ATM Adaptation Layer (AAL)
 - lower layer = ATM layer

ATM Adaptation Layer

AAL maps higher-layer information into ATM cells to be transported over an ATM network. At reception, AAL collects information from ATM cells for delivery to higher layers.

- AAL offers different service classes for user data
 - delay, bit rate and connection type (connectionless or circuit emulation) are the basic attributes of the service classes
- SAR (Segmentation and Reassembly) sub-layer for segmentation of variable length user data packets into fixed-size ATM cell payloads and at reception reassembly of ATM cell payload into user packets
- CS (Convergence Sub-layer) maps specific user data requirements onto ATM transport network
ATM service classes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Class A</th>
<th>Class B</th>
<th>Class C</th>
<th>Class D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing relation between source and destination</td>
<td>Required</td>
<td>Not required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit rate</td>
<td>Constant</td>
<td>Variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection mode</td>
<td>Connection-oriented</td>
<td>Connection-oriented</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL (s)</td>
<td>AAL1</td>
<td>AAL2</td>
<td>AAL3/4 or AAL5</td>
<td>AAL3/4 or AAL5</td>
</tr>
<tr>
<td>Examples</td>
<td>E1, nx64 kbit/s emulation</td>
<td>Packet video, audio</td>
<td>Frame Relay X.25</td>
<td>IP, SMDS</td>
</tr>
</tbody>
</table>

ATM Adaptation Layer 1 (AAL1)

- **P format**
 - 1 octet SAR-PDU header
 - 1 octet Structure pointer
 - 46 octets User information

- **Non-P format**
 - SAR-PDU header
 - User information

Notes:
- SAR-PDU: Segmentation and Reassembly Packet Data Unit
- CS: Convergence Sub-layer
- CRC: Cyclic Redundancy Check
ATM Adaptation Layer 2 (AAL2)

CID - Connection Identification
HEC - Header Error Check
LI - Length Indicator
LLC - Logical Link Control
RES - Reserved

LLC packet header CID=1
User information
3 octets < 61 octets

LLC packet header CID=2
User information

ATM cell payload

OSF - Offset
SN - Sequence Number
STF - Start Field

ATM header STF

ATM header

ATM Adaptation Layer 3/4 (AAL3/4)

AAL3/4 CPCS PDU

4 octets < 65 535 octets

CS-PDU header
CS-PDU user information Pad CS-PDU trailer

AAL3/4 SAR PDU

2 octets

SAR-PDU header
SAR-PDU payload Pad SAR-PDU trailer

SAR-PDU header
SAR-PDU user information

SAR-PDU header
SAR-PDU user info length

CS - Convergence Sub-layer
CPCS - Common Part CS
CRC - Cyclic Redundancy Check
MID - Message Identifier
SAR - Segmentation and Reassembly
PDU - Packet data Unit
Btag - Beginning tag
BAsize - Buffer Allocation tag
Etag - Ending tag
ATM Adaptation Layer 5 (AAL5)

- Pad - Padding octets
- UU - AAL layer user-to-user indicator
- CPI - Common part indicator
- LEN - Length indicator
- CRC - Cyclic redundancy Check

ATM layer

ATM layer (common to all services) offers transport of data in fixed-size cells and also defines the use of virtual connections (VPs and VCs)

- multiplexing/demultiplexing of cells belonging to different virtual connections
- translations of inbound VPIs/VCLs to outbound VPIs/VCLs
- cell header generation for data received from AAL and cell header extraction when a cell is delivered to AAL
- flow control
General of ATM switching (cont.)

- ATM is a connection-oriented transport concept
 - an end-to-end connection (virtual channel) established prior to transfer of cells
 - signaling used for connection set up and release
 - data transferred in fixed 53 octets long cells (5 octets for header and 48 octets for payload)
- Cells routed based on two header fields
 - virtual path identifier (VPI) - 8 bits for UNI and 12 bits for NNI
 - virtual channel identifier (VCI) - 16 bits for UNI and NNI
 - combination of VPI and VCI determines a specific virtual connection between two end-points

ATM cell structure

```
<table>
<thead>
<tr>
<th>GFC</th>
<th>VPI</th>
<th>VCI</th>
<th>PTI</th>
<th>CLP</th>
</tr>
</thead>
</table>
| UNI - User Network Interface
| NNI - Network-to-Network Interface
| VPI - Virtual Path Identifier
| VCI - Virtual Channel Identifier
| GFC - Generic Flow Control
| PTI - Payload Type Identifier
| CLP - Cell Loss Priority
| HEC - Header Error Control

HEC = 8 x (header octets 1 to 4) / (x^4 + x^2 + x + 1)
```
General of ATM switching (cont.)

• VPI/VCI is determined on a per-link basis
 => VPI/VCI on an incoming link is replaced (at the ATM switch) with another VPI/VCI for an outgoing link
 => number of possible paths in an ATM network increased substantially (compared to having end-to-end VPI/VCIs)
• Each ATM switch includes a Routing Information Table (RIT), which is used in mapping incoming VPI/VCIs to outgoing VPI/VCIs
• RIT includes:
 • old VPI/VCI
 • new VPI/VCI
 • output port address
 • priority

General of ATM switching (cont.)

• When an ATM cell arrives to an ATM switch, VPI/VCI in the 5-octet cell header is used to point to a RIT location, which includes
 • new VPI/VCI to be added to an outgoing cell
 • output port address indicating to which port the cell should be routed
 • priority field allowing the switch to selectively send cells to output ports or discard them (in case of buffer overflow)
• Three routing modes:
 • unicast - \(\log_2 N \) bits needed to address a destination output port
 • multi-cast - \(N \) bits needed to address destined output ports
 • broadcast - \(N \) bits needed to address destined output ports
• In multi-cast/broadcast case, a cell is replicated into multiple copies and each copy is routed to its intended output port/outbound VC
General of ATM switching (cont.)

- ATM connections are either
 - pre-established - permanent virtual connections (PVCs)
 - dynamically set up - switched virtual connections (SVCs)
- Signaling (UNI or PNNI) messages carry call set up requests to ATM switches
- Each ATM switch includes a call processor, which
 - processes call requests and decides whether the requested connection can be established
 - updates RIT based on established and released call connections
 - ensuring that VPIs/VCIs of cells, which are coming from several inputs and directed to a common output are different
 - finds an appropriate routing path between source and destination ports

VPI/VCI translation along transport path

<table>
<thead>
<tr>
<th>Old VPI/VCI</th>
<th>New VPI/VCI</th>
<th>Output port</th>
<th>Priority field</th>
</tr>
</thead>
<tbody>
<tr>
<td>X P 15</td>
<td>Y Z 10</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Y Z 10</td>
<td>Z W 8</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

RIT - Routing Information Table
VPI/VCI translation (cont.)

• VPI/VCI replacement usually takes place at the output ports
 => RIT split into two parts
 • input RIT - includes old VPI/VCI and N-bit output port address
 • output RIT - includes \(\log_2 N \)-bit input port address, old VPI/VCI
 and new VPI/VCI
• Since cells from different input ports can arrive to the same output
 port and have the same old VPI/VCI, the input port address is
 needed to identify uniquely different connections

ATM switches

• General of ATM switching
• **Structure of an ATM switch**
• Example switch implementations
 • Knockout switch
 • Abacus
• Dimensioning example
Main blocks

- **Line interface** cards (LICs), which implement input and output port controllers (IPC and OPCs)
- **Switch fabric** provides interconnections between input and output ports
- **Switch controller**, which includes
 - a call processor for RIT manipulations
 - control processor to perform operations, administration and maintenance (OAM) functions for switch fabric and LICs
Functions of input port controller

- Line termination and reception of incoming line signal
- Conversion of optical signal to electronic form if needed
- Decoding/descrambling of line/block coded or scrambled line signal
- Transport frame, e.g. SDH or PDH frame, processing
- Extraction of cell header for processing
- Storing of cell payload (or whole cells) to buffer memory
- HEC processing
 => discard corrupted cells
 => forward headers of uncorrupted cells to routing process
- Generation of a new cell header (if RIT only at input) and routing tag to be used inside the switch fabric
- Cell stream is slotted and a cell is forwarded through the switch fabric in a time-slot

Functions of output port controller

- Cells received from the switch fabric are stored into output buffer
- Generation of a new cell header (if RIT also at output)
- One cell at a time is transferred to the outgoing line interface
- If no buffering available then contention resolution
 => one cell transmitted and others discarded (or buffered at the inputs to wait for the next contention round)
- If buffering available and priorities supported then higher priority cells forwarded first to transport frame processing
- Cell encapsulation into transport frames, e.g. SDH or PDH frame
- Line/block encoding or scrambling of outgoing bit stream
- Conversion of electronic signal to optical form (if needed)
- Transmission of outgoing line signal
Input and output controller blocks

Input controller blocks:

Output controller blocks:

Switch control

- Switch controller implements functions of ATM management and control layer
- **Control plane**
 - responsible for establishment and release of connections, which are either pre-established (PVCs) using management functions or set up dynamically (SVCs) on demand using signaling, such as UNI and PNNI signaling
 - signaling/management used to update routing tables (RITs) in the switches
 - implements ILMI (Integrated Local Management Interface), UNI signaling and PNNI routing protocols
 - processes OAM cells
Switch control (cont.)

- **ILMI protocol** uses SNMP (Simple Network Management Protocol) to provide ATM network devices with status and configuration information related to PVCs, SVCs, registered ATM addresses and capabilities of ATM interfaces
- **UNI signaling** specifies the procedures to dynamically establish, maintain and clear ATM connections at UNI
- **PNNI protocol** provides the functions to establish and clear connections, manage network resources and allow network to be easily configurable
- **Management plane**
 - provides management functions and capabilities to exchange information between the user plane and control plane

ATM protocol reference model
Switch fabric

- Provides interconnections between input and output interfaces
- ATM specific requirements
 - switching of fixed length cells
 - no regular switching pattern between an input-output port pair, i.e., time gap between consecutive cells to be switched from an input to a specific output varies with time
- Early implementations used time switching principle (mostly based on shared media fabrics) - easy to use, but limited scalability
- Increased input rates forced to consider alternative solutions
 => small crossbar fabrics were developed
 => multi-stage constructions with self-routing reinvented

Cell routing through switch fabric

- Cells usually carried through switch fabric in fabric specific frames
- Carrier frames include, e.g. header, payload and trailer fields
- Header field sub-divided into
 - source port address
 - destination port address
 - flow control sub-field (single/multi-cast cell, copy indication, etc.)
- Payload field carries an ATM cell (with or without cell header)
- Trailer is usually optional and implements an error indication/correction sub-field, e.g. parity or CRC

General structure of a cell carrier frame

| Frame header | Frame payload | Frame trailer |
ATM switching and buffering

Due to asynchronous nature of ATM traffic, buffering is an important part of an ATM switch fabric design.

A number of different buffering strategies have been developed:

- input buffering
- output buffering
- input-output buffering
- internal buffering
- shared buffering
- cross-point buffering
- recirculation buffering
- multi-stage shared buffering
- virtual output queuing buffering

Buffering strategies

- Input buffered
- Output buffered
- Input-output buffered
- Internally buffered
- Shared buffer
Buffering strategies (cont.)

Cross-point buffered

Recirculation buffered

Multi-stage shared buffer

Virtual output queuing

ATM switching and buffering (cont.)

Input buffered switches

- Suffers from HOL blocking => throughput limited to 58.6 % of the maximum capacity of a switch (under uniform load)
- Windowing technique can be used to increase throughput, i.e. multiple cells in each input buffer are examined and considered for transmission to output ports (however only one cell transmitted in a time-slot)
 => window size of two gives throughput of 70 %
 => windowing increases implementation complexity
Output buffered switches

- No HOL blocking problem
- Theoretically 100 % throughput possible
- High memory speed requirement, which can be alleviated by concentrator
 => output port count reduced
 => reduced memory speed requirement
 => increased cell loss rate (CLR)
- Output buffered systems largely used in ATM switching

Input-output buffered switches

- Intended to combine advantages of input and output buffering
 - in input buffering, memory speed comparable to input line rate
 - in output buffering, each output accepts up to L cells \((1 \leq L \leq N)\)
 => if there are more than L cells destined for the same output, excess cells are stored in input buffers
- Desired throughput can be obtained by engineering the speed up factor \(L\), based on the input traffic distribution
- Output buffer memory needs to operate at \(L\) times the line rate
 => large-scale switches can be realized by applying input-output buffering
- Complicated arbitration mechanism required to determine, which \(L\) cells among the \(N\) possible HOL cells go to a contented output port
ATM switching and buffering (cont.)

Internally buffered switch

- Buffers implemented within switch blocks
- Example is a buffered banyan switch
- Buffers are used to store internally blocked cells
 \(\Rightarrow\) reduced cell loss rate
- Suffers from low throughput and high transfer delay
- Support of QoS requires scheduling and buffer management schemes
 \(\Rightarrow\) increased implementation cost

Shared-buffer switches

- All inputs and outputs have access to a common buffer memory
- All inputs store a cell and all outputs retrieve a cell in a time-slot
 \(\Rightarrow\) high memory access speed
- Works effectively like an output buffered switch
 \(\Rightarrow\) optimal delay and throughput performance
- For a given CLR shared-buffer switches need less memory than other buffering schemes
 \(\Rightarrow\) smaller memory size reduces cost when switching speed is high (\(\sim\) Gbits/s)
- Switch size is limited by the memory access speed (read/write time)
- Cells destined for congested outputs can occupy shared memory
 leaving less room for cells destined for other outputs (solved by assigning minimum and maximum buffer capacity for each output)
Cross-point buffered switches

- A crossbar switch with buffers at cross-points
- Buffers are used to avoid output blocking
- Each cross-point implements a buffer and an address filter
- Cells addressed to an output are accepted to a corresponding buffer
- Cells waiting in buffers on the same column are arbitrated to the output port one per time-slot
- No performance limitation as with input buffering
- Similar to output queuing, but the queue for each output is distributed over a number (N) of buffers => total memory space for a certain CLR > CLR for an output buffered system
- Including cross-point memory in a crossbar chip, limits the number of cross-points

Recirculation buffered switches

- Proposed to overcome output port contention problem
- Cells that have lost output contention are stored in circulation buffers and they contend again in the next time-slot
- Out-of-sequence errors avoided by assigning priority value to cells
- Priority level increased by one each time a cell loses contention => a cell with the highest priority is discarded if it loses contention
- Number of recirculation ports can be engineered to fulfill required cell loss rate (CLR = 10^{-6} at 80 % load and Poisson arrivals => recirculation port count divided by input port count = 2.5)
- Example implementations Starlite switch and Sunshine switch
 - Sunshine allows several cells to arrive to an output in a time-slot => dramatic reduction of recirculation ports
ATM switching and buffering (cont.)

Multi-stage shared buffer switches

- Shared buffer switches largely used in implementing small-scale switches - due to sufficiently high throughput, low delay and high memory utilization
- Large-scale switches can be realized by interconnecting multiple shared buffer switch modules
 => system performance degraded due to internal blocking
- In multi-stage switches, queue lengths may be different in the 1st and 2nd stage buffers and thus maintenance of cell sequence at the output module may be very complex and expensive

Virtual output queuing switches

- A technique to solve HOL blocking problem in input buffered switches
- Each input implements a logical buffer for each output (in a common buffer memory)
- HOL blocking reduced and throughput increased
- Fast and intelligent arbitration mechanism required, because all HOL cells need to be arbitrated in each time-slot
 => arbitration may become the system bottleneck
Design criteria for ATM switches

- Several criteria need to be considered when designing an ATM switch architecture
- A switch should provide bounded delay and small cell loss probability while achieving a maximum throughput (close to 100%)
- Capacity to support high-speed input lines (which possibly deploy different transport technologies, e.g. PDH or SDH)
- Self-routing and distributed control essential to implement large-scale switches
- Maintenance of correct cell sequence at outputs

Performance criteria for ATM switches

- Performance defined for different quality of service (QoS) classes
- Performance parameters:
 - cell loss ratio (CLR)
 - cell transfer delay (CTD)
 - two-point cell transfer delay variation (CDV)

Bellcore recommended performance requirements

<table>
<thead>
<tr>
<th>Performance parameter</th>
<th>CLP</th>
<th>QoS1</th>
<th>QoS3</th>
<th>QoS4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell loss ratio</td>
<td>0</td>
<td><10^{-10}</td>
<td><10^{-7}</td>
<td><10^{-7}</td>
</tr>
<tr>
<td>Cell loss ratio</td>
<td>1</td>
<td>N/S</td>
<td>N/S</td>
<td>N/S</td>
</tr>
<tr>
<td>Cell transfer delay (99th percentile)</td>
<td>1/0</td>
<td>150 μs</td>
<td>150 μs</td>
<td>150 μs</td>
</tr>
<tr>
<td>Cell delay variation (10^{-10} quantile)</td>
<td>1/0</td>
<td>250 μs</td>
<td>N/S</td>
<td>N/S</td>
</tr>
<tr>
<td>Cell delay variation (10^{-7} quantile)</td>
<td>1/0</td>
<td>N/S</td>
<td>250 μs</td>
<td>250 μs</td>
</tr>
</tbody>
</table>

N/S - not specified
Distribution of cell transfer delay

- Figure below shows a typical cell transfer delay distribution through a switch node.
- Fixed delay is attributed to table lookup delay and other cell header processing (e.g. HEC processing).
- For example:
 - Prob(CTD > 150 µs) < 1 - 0.99 => a = 0.01 and x = 150 µs (QoS1, 3 and 4)
 - Prob(CTD > 250 µs) < 10^{-10} => a = 10^{-10} and x = 250 µs (QoS1)

Cell processing times at different transmission speeds

- Processing time for different link speeds:
 - 221 µs/E1
 - 2.83 µs/STM-1
 - 708 ns/STM-4
 - 177 ns/STM-16

© P. Raatikainen Switching Technology / 2007
Delay and jitter components

- Encapsulation/decapsulation delay
- Admission control (smoothing)
- Queuing delay
- Switching delay
- Transmission delay
- Propagation delay
- Reassembly (playtime) delay

No contribution to jitter
Contribution to jitter

ATM switches

- General of ATM switching
- Structure of an ATM switch
- Example switch implementations
 - Knockout switch
 - Abacus
- Dimensioning example
ATM switching fabric implementations

A lot of different switching network architectures have been experimented in ATM switch fabrics:

- Batcher-banyan based switches, e.g. Sunshine
- Clos network based switches, e.g. Atlanta
- Crossbar/crosspoint switches, e.g. TDXP (Tandem-Crosspoint)
- Ring and single/dual bus based switches

Most advanced ATM switching concepts are switching network independent, e.g. Knockout and Abacus

Knockout switch

- Output buffered switches largely used in ATM networks
- Capacity of output buffered switches limited by memory speed
- Problem solved by limiting the number of cells allowed to an output during each time-slot and excess cells discarded
 => knockout principle
- How many cells to deliver to an output port during each time-slot
 => this number can be determined for a given cell loss rate (CLR), e.g. 12 time-slots for CLR=10^-10, independent of switch size
- Memory speed seemed to be no more a bottleneck, however no commercial switch implementations appeared
 - inputs are supposed to be uncorrelated (not the case in real networks)
 - idea of discarding cells not an appealing one
- Knockout principle has been basis for various switch architectures
Knockout principle

• **N** input lines each implement a broadcast input bus, which is connected to every output block

• An output block is composed of cell filters that are connected to an **N-to-L** concentrator, which is further connected to a shared buffer

• No congestion between inputs and output blocks (NxN switch)

• Congestion occurs at the interfaces of outputs (inside concentrator)

• **k** cells passing through cell filters enter the concentrator and
 - if **k≤L** then all cells go to shared buffer
 - if **k>L** then L cells go to shared buffer and **k-L** cells are discarded

• Shared buffer includes a barrel shifter and **L** output (FIFO) buffers
 - barrel shifter stores cells coming from concentrator to FIFO memories in round robin fashion
 => complete sharing of output FIFO buffers

Knockout switch interconnection architecture

[Diagram of Knockout switch interconnection architecture]

- **Inputs**
- **Broadcast buses**
- **Outputs**
- **Bus interfaces**
Knockout switch bus interface

Operation of barrel shifter
Example construction of concentrator

Cell loss probability

- In every time-slot there is a probability ρ that a cell arrives at an input.
- Every cell is equally likely destined for any output.
- P_k denotes probability of k cells arriving in a time-slot to the same output, which is a binomial distribution:
 \[P_k = \binom{N}{k} \left(\frac{\rho}{N} \right)^k \left(1 - \frac{\rho}{N} \right)^{N-k}, \quad k = 0, 1, \ldots, N \]
- Probability of a cell being dropped in N-to-L concentrator is given by:
 \[P(\text{cell loss}) = \frac{1}{\rho} \sum_{k=L+1}^{N} (k-L) \binom{N}{k} \left(\frac{\rho}{N} \right)^k \left(1 - \frac{\rho}{N} \right)^{N-k} \]
- Taking the limit as $N \to \infty$ and with some manipulation:
 \[P(\text{cell loss}) = \left(1 - \frac{L}{\rho} \right) \left(1 - \sum_{k=0}^{\infty} \frac{\rho^k e^{-\rho}}{k!} \right) + \frac{\rho^L e^{-\rho}}{L!} \]
Cell loss probability (cont.)

Cell loss probability for some switch sizes (90% load)

- $N = 16$
- $N = 32$
- $N = 64$
- $N = \infty$

Cell loss probability for some load values ($N = \infty$)

- Load = 100%
- Load = 90%
- Load = 80%
- Load = 70%
- Load = 60%

Channel grouping

Channel grouping principle used in modular two-stage networks

- A group of outputs treated identically in the first stage
- A cell destined for an output of a group is routed to any output (at the first stage), which is connected to that group at the second stage
- First stage switch routes cells to proper output groups and second stage switches route cells to destined output ports
Channel grouping (cont.)

Asymmetric switch with line extension ratio of KM/N

- Output group of M output ports corresponds to a single output address for the 1st stage switch
- At any given time-slot, M cells at most can be cleared from a particular output group (one cell on each output port)

Maximum throughput per input

- increases with K/N for a given M (because load per output group decreases)
- increases with M for given K/N (because each output group has more ports for clearing cells)

<table>
<thead>
<tr>
<th>M</th>
<th>K/N</th>
<th>1/16</th>
<th>1/8</th>
<th>1/4</th>
<th>1/2</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0.061</td>
<td>0.117</td>
<td>0.219</td>
<td>0.382</td>
<td>0.586</td>
<td>0.764</td>
<td>0.877</td>
<td>0.938</td>
<td>0.969</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.121</td>
<td>0.233</td>
<td>0.426</td>
<td>0.686</td>
<td>0.885</td>
<td>0.966</td>
<td>0.991</td>
<td>0.998</td>
<td>0.999</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.241</td>
<td>0.457</td>
<td>0.768</td>
<td>0.959</td>
<td>0.996</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.476</td>
<td>0.831</td>
<td>0.991</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>0.878</td>
<td>0.959</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Channel grouping (cont.)

- Maximum throughput per input increases with M for given KM/N
- Channel grouping has a strong effect on throughput for smaller KM/N than for larger ones

<table>
<thead>
<tr>
<th>M</th>
<th>KM/N = 1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.586</td>
<td>0.764</td>
<td>0.877</td>
<td>0.938</td>
<td>0.969</td>
<td>0.984</td>
</tr>
<tr>
<td>2</td>
<td>0.686</td>
<td>0.885</td>
<td>0.966</td>
<td>0.991</td>
<td>0.998</td>
<td>0.999</td>
</tr>
<tr>
<td>4</td>
<td>0.768</td>
<td>0.959</td>
<td>0.966</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0.831</td>
<td>0.991</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.878</td>
<td>0.999</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>0.912</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>0.937</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>0.955</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>0.968</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>0.978</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024</td>
<td>0.984</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximum throughput as a function of line expansion ratio KM/N

Multicast output buffered ATM switch (MOBAS)

- Channel grouping extends to the general Knockout principle
- MOBAS adopts the general Knockout principle
- MOBAS consists of
 - input port controllers (IPCs)
 - multi-cast grouping networks (MGN1 and MGN2)
 - multi-cast translation tables (MTTs)
 - output port controllers (OPCs)
MOBAS switch performance

- IPCs terminate incoming cells, look up necessary information in translation tables and attach information in front of cells so that the cells can properly be routed in MGNs
- MGNs replicate multi-cast cells based on their multi-cast patterns and send one copy to each addressed output group
- MTTs facilitate the multi-cast cell routing MGN2
- OPCs store temporarily multiple arriving cells (destined for their output ports) in an output buffer, generate multiple copies for multi-cast cells with a cell duplicator (CD), assign a new VCI obtained from a translation table to each copy, convert internal cell format to standard ATM cell format and finally send the cell to the next switching node
- CD reduces output buffer size by storing only one copy of a multi-cast cell - each copy is updated with a new VCI upon transmission

MOBAS architecture

IPC - Input Port Controller
MGN - Multi-cast Grouping Network
MTT - Multi-cast Translation Table
OPC - Output Port Controller
SM - Switching Module
SSM - Small Switch Module
CD - Cell Duplicator
Abacus switch

• Knockout switches suffer from cell loss due to concentration/channel grouping (i.e. lack of routing links inside switch fabric)
• In order to reduce CLR, excess cells are stored in input buffers => result is an input-output buffered switch
• Abacus switch is an example of such a switch
 • basic structure similar to MOBAS, but it does not discard cells in switch fabric
 • switching elements resolve contention for routing links based on priority level of cells
 • input ports store temporarily cells that have lost contention
 • extra feedback lines and logic added to input ports
 • distributed arbitration scheme allows switch to grow to a large size
ATM switches

- General of ATM switching
- Structure of an ATM switch
- Example switch implementations
 - Knockout switch
 - Abacus
- Dimensioning example

Dimensioning example

- An ATM-switch is to be designed to support 20 STM-4 interfaces. RIT will be implemented at the input interfaces. How fast should RIT lookup process be?
- Cells are encapsulated into frames for delivery through the switch fabric. A frame includes a 53-octet payload field and 3 octets of overhead for routing and control inside the switch fabric. What is the required throughput of the switch fabric?

Solution

- ATM cells are encapsulated into VC-4 containers, which include 9 octets of overhead and 9x260 octets of payload. One VC-4 container is carried in one STM-1 frame and each STM-1 frame contains 9x261 octets of payload and 9x9 octets of overhead. (See figure on the next slide)
Dimensioning example (cont.)

Solution (cont.)

- STM-4 frame carries 4 STM-1 frames and thus there will be
 \[4 \times 9 \times 260 / 53 = 176.6\] cells arriving in one STM-4 frame
- One STM-4 frame is transported in 125 \(\mu\)s
 \[=> 176.6 / 125 \mu s = 1412830.2\] cells will arrive to an input in 1 sec
 \[=>\] one RIT lookup should last no more than 707.8 ns
- Total throughput of the switch fabric is \[20 \times 1412830.2\] cells/s
- Since each cell is carried through the switch fabric in a container of
 56 octets, the total load introduced by the inputs to the switch fabric
 is \[20 \times 1412830.2 \times 56\] octets/s \[\approx 1.582 \times 10^9\] octets/s \[\approx 12,7\] Gbits/s