Switch Fabrics

Switching Technology S38.3165
http://www.netlab.hut.fi/opetus/s383165

Switch fabrics

- Basic concepts
- Time and space switching
- **Two stage switches**
- Three stage switches
- Cost criteria
- Multi-stage switches and path search
A switch fabric as a combination of space and time switches

- Two stage switches
 - Time-Time (TT) switch
 - Time-Space (TS) switch
 - Space-Time (ST) switch
 - Space-Space (SS) switch

- TT-switch gives no advantage compared to a single stage T-switch
- SS-switch increases blocking probability

A switch fabric as a combination of space and time switches (cont.)

- ST-switch gives high blocking probability (S-switch can develop blocking on an arbitrary bus, e.g. slots from two different buses attempting to flow to a common output)
- TS-switch has low blocking probability, because T-switch allows rearrangement of time-slots so that S-switching can be done blocking free
Time multiplexed space (TMS) switch

- Space divided inputs and each of them carry a frame of three time-slots
- Input frames on each link are synchronized to the crossbar
- A switching plane for each time-slot to direct incoming slots to destined output links of the corresponding time-slot

Connection conflicts in a TMS switch

- Space divided inputs and each of them carry a frame of three time-slots
- Input frames on each link are synchronized to the crossbar
- A switching plane for each time-slot to direct incoming slots to destined output links of the corresponding time-slot

© P. Raatikainen Switching Technology / 2007 L.3 - 5

© P. Raatikainen Switching Technology / 2007 L.3 - 6
TS switch interconnecting TDM links

- Time division switching applied prior to space switching
- Incoming time-slots can always be rearranged such that output requests become conflict free for each slot of a frame, provided that the number of requests for each output is no more than the number of slots in a frame.

SS equivalent of a TS-switch
Connections through SS-switch

Example connections:
- (1, 3, 1) => (2, 1, 2)
- (1, 4, 2) => (2, 3, 4)

Switch fabrics

- Basic concepts
- Time and space switching
- Two stage switches
- **Three stage switches**
- Cost criteria
- Multi-stage switches and path search
Three stage switches

- Basic TS-switch sufficient for switching time-slots onto addressed outputs, but slots can appear in any order in the output frame
- If a specific input slot is to carry data of a specific output slot then a time-slot interchanger is needed at each output
 => any time-slot on any input can be connected to any time-slot on any output
 => blocking probability minimized
- Such a 3-stage configuration is named TST-switching (equivalent to 3-stage SSS-switching)

TST-switch:

SSS presentation of TST-switch
Three stage switch combinations

- Possible three stage switch combinations:
 - Time-Time-Time (TTT) (not significant, no connection from PCM to PCM)
 - Time-Time-Space (TTS) (=TS)
 - Time-Space-Time (TST)
 - Time-Space-Space (TSS)
 - Space-Time-Time (STT) (=ST)
 - Space-Time-Space (STS)
 - Space-Space-Time (SST) (=ST)
 - Space-Space-Space (SSS) (not significant, high probability of blocking)

- Three interesting combinations TST, TSS and STS

Time-Space-Space switch

- Time-Space-Space switch can be applied to increase switching capacity
Space-Time-Space switch

- Space-Time-Space switch has a high blocking probability (like ST-switch) - not a desired feature in public networks

Graph presentation of space switch

- A space division switch can be presented by a graph $G = (V, E)$
 - V is the set of switching nodes
 - E is the set of edges in the graph
- An edge $e \in E$ is an ordered pair $(u, v) \in V$
 - more than one edge can exist between u and v
 - edges can be considered to be bi-directional
- V includes two special sets (T and R) of nodes not considered part of switching network
 - T is a set of transmitting nodes having only outgoing edges (input nodes to switch)
 - R is a set of receiving node having only incoming edges (output nodes from switch)
A connection requirement is specified for each \(t \in T \) by subset \(R_t \in R \) to which \(t \) must be connected.
- Subsets \(R_t \) are disjoint for different \(t \).
- In case of multi-cast \(R_t \) contains more than one element for each \(t \).

A path is a sequence of edges \((t,a), (a,b), (b,c), \ldots, (f,g), (g,r) \in E, t \in T, r \in R \) and \(a,b,c,\ldots,f,g \) are distinct elements of \(V - (T+R) \).

Paths originating from different \(t \) may not use the same edge.
Paths originating from the same \(t \) may use the same edges.

Graph presentation example

\[V = \{ t_1, t_2, \ldots, t_{15}, s_1, s_2, \ldots, s_5, u_1, u_2, v_1, v_2, \ldots, v_5, r_1, r_2, \ldots, r_{15} \} \]
\[E = \{(t_1, s_1), (t_1, s_2), (t_1, s_3), (s_1, u_1), (s_1, u_2), (s_2, u_3), (u_1, v_1), (u_1, v_2), \ldots, (u_5, v_5), (v_1, r_1), (v_1, r_2), \ldots, (v_5, r_{15})\} \]
Graph presentation of connections

Establish connections:

Path 1 = \{(t_{15}, s_4), (s_4, u_2), (u_1, v_2), (v_2, r_5)\}

Path 2 = \{(t_4, s_2), (s_2, u_2), (u_1, v_1), (v_1, r_2), (u_2, v_4), (v_4, r_{11})\}
Graph presentation of connections (cont.)

Switch fabrics

- Basic concepts
- Time and space switching
- Two stage switches
- Three stage switches
- Cost criteria
- Multi-stage switches and path search
Cost criteria for switch fabrics

- Number of cross-points
- Fan-out
- Logical depth
- Blocking probability
- Complexity of switch control
- Total number of connection states
- Path search

Cross-points

- Number of cross-points gives the number of on-off gates (usually “and-gates”) in space switching equivalent of a fabric
 - minimization of cross-point count is essential when cross-point technology is expensive (e.g. electro-mechanical and optical cross-points)
 - Very Large Scale Integration (VLSI) technology implements cross-point complexity in Integrated Circuits (ICs) => more relevant to minimize number of ICs than number of cross-points
 - Due to increasing switching speeds, large fabric constructions and increased integration density of ICs, power consumption has become a crucial design criteria
 - higher speed => more power
 - large fabrics => long buses, fan-out problem and more driving power
 - increased integration degree of ICs => heating problem
Fan-out and logical depth

- VLSI chips can hide cross-point complexity, but introduce pin count and fan-out problem
 - length of interconnections between ICs can be long lowering switching speed and increasing power consumption
 - parallel processing of switched signals may be limited by the number of available pins of ICs
 - fan-out gives the driving capacity of a switching gate, i.e. number of inputs (gates/cross-points) that can be connected to an output
 - long buses connecting cross-points may lower the number of gates that can be connected to a bus
- Logical depth gives the number of cross-points a signal traverses on its way through a switch
 - large logical depth causes excessive delay and signal deterioration

Illustration of cross-points, fan-out and logical depth

An 8x8 crossbar

- Number of cross-points = 64
- Fan-out = 8
- Logical depth = 1

An 8x8 banyan

- Number of cross-points = 48
- Fan-out = (1 or) 2
- Logical depth = 3
Blocking probability

- Blocking probability of a multi-stage switching network difficult to determine
- Lee’s approximation gives a coarse measure of blocking
- Assume uniformly distributed load
 - equal load in each input
 - load distributed uniformly among intermediate stages (and their outputs) and among outputs of the switch
- Probability that an input is engaged is $a = \lambda S$ where
 - λ = input rate on an input link
 - S = average holding time of a link

Blocking probability (cont.)

- Under the assumption of uniformly distributed load, probability that a path between any two switching blocks is engaged is $p = an/k \ (k\geq n)$
- Probability that a certain path from an input block to an output block is engaged is $1 - (1-p)^2$ where the last term is the probability that both (input and output) links are disengaged
- Probability that all k paths between an input switching block and an output switching block are engaged is
 $$B = [1 - (1- an/k)^2]^k$$
 which is known as Lee’s approximation
Control complexity

- Given a graph G, a control algorithm is needed to find and set up paths in G to fulfill connection requirements.
- Control complexity is defined by the hardware (computation and memory) requirements and the run time of the algorithm.
- Amount of computation depends on blocking category and degree of blocking tolerated.
- In general, computation complexity grows exponentially as a function of the number of terminals.
- There are interconnection networks that have a regular structure for which control complexity is substantially reduced.
- There are also structures that can be distributed over a large number of control units.
Control complexity (cont.)

Exponential growth of computation complexity

Example of a regular interconnection structure

Example of a structures that can be distributed over a number of control units

Management complexity

- **Network management** involves adaptation and maintenance of a switching network after the switching system has been put in place

- Network management deals with
 - failure events and growth in connectivity demand
 - changes of traffic patterns from day to day
 - overload situations
 - diagnosis of hardware failures in switching system, control system as well as in access and trunk network
 - in case of failure, traffic is rerouted through redundant built-in hardware or via other switching facilities
 - diagnosis and failure maintenance constitute a significant part of software of a switching system
 - In order for switching cost to grow linearly in respect to total traffic, switching functions (such as control, maintenance, call processing and interconnection network) should be as modular as possible
Example 1

- A switch with
 - a capacity of N simultaneous calls
 - average occupancy of lines during a busy hour is X Erlangs
 - $Y\%$ requirement for internal use
 - notice that two (one-way) connections are needed for a call

requires a switch fabric with $M = 2 \times \left[\frac{(100+Y)}{100}\right] \times \frac{N}{X}$ inputs and outputs.

- If $N = 20\,000$, $X = 0.72$ Erl. and $Y = 10\%$

=> $M = 2 \times 1.1 \times 20\,000/0.72 = 61\,112$
=> corresponds to 2038 E1 links

Amount of traffic in Erlangs

- Erlang defines the amount of traffic flowing through a communication system - it is given as the aggregate holding time of all channels of a system divided by the observation time period

- Example 1:
 During an hour period, three calls are made (5 min, 15 min and 10 min) using a single telephone channel (per transfer direction)
 => the amount of traffic carried by this channel is (30 min/60 min) = 0.5 Erlangs
 Since each call occupies two one-way channels, the total generated traffic is 2x0.5 Erlangs.

- Example 2:
 A telephone exchange supports 1000 channels and during a busy hour each channel is occupied 45 minutes on the average
 => the amount of traffic carried through the switch during the busy hour is (1000x45 min / 60 min) = 750 Erlangs.
Erlang’s first formula

\[E_1(n, A) = \frac{A^n}{n!} \left(1 + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots + \frac{A^n}{n!} \right) \]

- Erlang’s 1st formula applies to systems fulfilling conditions:
 - a failed call is disconnected (loss system)
 - full accessibility
 - time between subsequent calls vary randomly
 - large number of sources
- \(E_1(5, 2.7) \) implies that we have a system of 5 inlets and offered load is 2.7 Erlangs - blocking calculated using the formula is 8.5 %
- Tables and diagrams (based on Erlang’s formula) have been produced to simplify blocking calculations

Example 2

- An exchange for 1000 subscribers is to be installed and it is required that the blocking probability should be below 10 %. If E1 links are used to carry the subscriber traffic to telephone network, how many E1 links are needed?
 - average call lasts 6 min
 - a subscriber places one call during a 2-hour busy period (on the average)
- Amount of offered traffic is \((2 \times 1000 \times 6 \text{ min} / 2 \times 60 \text{ min}) = 100 \text{ Erl} \).
- Erlang’s 1st formula gives for 10 % blocking and load of 100 Erl. that \(n = 97 \)
 => required number of E1 links is \(\text{ceil}(97/30) = 4 \)
 (two incoming and two outgoing E1 links)
Example 3

- Suppose that driving current of a switching gate (cross-point) is 100 mA and its maximum input current is 8 mA
- How many output gates can be connected to a bus, driven by one input gate, if the capacitive load of the bus is negligibly small?
 - Fan-out = $\text{floor}[100/8] = 12$

- How many output gates can be connected to a bus driven by one input gate if load of the bus corresponds to 15% of the load of a gate input?
 - Fan-out = $\text{floor}[100/(1.15 \times 8)] = 10$

Switch fabrics

- Basic concepts
- Time and space switching
- Two stage switches
- Three stage switches
- Cost criteria
 - **Multi-stage switches and path search**
Multi-stage switching

- Large switch fabrics could be constructed by using a single $N \times N$ crossbar, interconnecting N inputs to N outputs
 - such an array would require N^2 cross-points
 - logical depth = 1
 - considering the limited driving power of electronic or optical switching gates, large N means problems with signal quality (e.g. delay, deterioration)
- Multi-stage structures can be used to avoid the problems
- Major design problems with multi-stages
 - find a non-blocking structure
 - find non-conflicting paths through the switching network

Multi-stage switching (cont.)

- Let’s take a network of K stages
- Stage k ($1 \leq k \leq K$) has r_k switch blocks (SB)
- Switch block j ($1 \leq j \leq r_k$) in stage k is denoted by $S(j,k)$
- Switch j has m_k inputs and n_k outputs
- Input i of $S(j,k)$ is represented by $e(i,j,k)$
- Output i of $S(j,k)$ is represented by $o(i,j,k)$
- Relation $o(i,j,k) = e(i,j',k+1)$ gives interconnection between output i and input i' of switch blocks j and j' in consecutive stages k and $k+1$
- Special class of switches:
 - $n_k = r_{k+1}$ and $m_k = r_{k-1}$
 - each SB in each stage connected to each SB in the next stage
Multi-stage switching (cont.)

SB = Switch Block

Stage 1 Stage 2 Stage k Stage K-1 Stage K

...

1 2 1 2 1 2

Clos network

m_k = number of inputs in a SB at stage k
n_k = number of outputs in a SB at stage k
r_k = number of SBs at stage k

- parameters m_1, n_3, r_1, r_2, r_3 chosen freely
- other parameters determined uniquely by $n_1 = r_2$, $m_2 = r_1$, $n_2 = r_3$, $m_3 = r_2$

SB = Switch Block

© P. Raatikainen Switching Technology / 2007 L3 - 41

© P. Raatikainen Switching Technology / 2007 L3 - 42
Graph presentation of a Clos network

Every SB in stage k is connected to all r_{k+1} SBs in the following stage $k+1$ with a single link.

Path connections in a 3-stage network

- An input of SB x may be connected to an output of SB y via a middle stage SB a
- Other inputs of SB x may be connected to other outputs of SB y via other middle stage SBs (b, c, …)
- Paull’s connection matrix is used to represent paths in three stage switches
Paull’s matrix

- Middle stage switch blocks \((a, b, c)\) connecting 1st stage SB \(x\) to 3rd stage SB \(y\) are entered into entry \((x, y)\) in \(r_1 \times r_3\) matrix
- Each entry of the matrix may have 0, 1 or several middle stage SBs
- A symbol \((a, b, ..)\) appears as many times in the matrix as there are connections through it

Paull’s matrix (cont.)

Conditions for a legitimate point-to-point connection matrix:

1. Each row has at most \(m_1\) symbols, since there can be as many paths through a 1st stage SB as there are inputs to it
2. Each column has at most \(n_3\) symbols, since there can be as many paths through a 3rd stage SB as there are outputs from it
Paull’s matrix (cont.)

Conditions of a legitimate point-to-point connection matrix (cont.):

3 Symbols in each row must be distinct, since only one edge connects a 1st stage SB to a 2nd stage SB
=> there can be at most \(r_2 \) different symbols in each row

4 Symbols in each column must be distinct, since only one edge connects a 2nd stage SB to a 3rd stage SB and an edge does not carry signals from several inputs
=> there can be at most \(r_2 \) different symbols in each column

In case of multi-casting, conditions 1 and 3 may not be valid, because a path from the 1st stage may be directed via several 2nd stage switch blocks. Conditions 2 and 4 remain valid.

Strict-sense non-blocking Clos

Definitions:

- \(T' \) is a subset of set \(T \) of transmitting terminals
- \(R' \) is a subset of set \(R \) of receiving terminals
- Each element of \(T' \) is connected by a legitimate multi-cast tree to a non-empty and disjoint subset \(R' \)
- Each element of \(R' \) is connected to one element of \(T' \)

A network is strict sense non-blocking if any \(t \in T - T' \) can establish a legitimate multi-cast tree to any subset \(R - R' \) without changes to the previously established paths.

A rearrangeable network satisfies the same conditions, but allows changes to be made to the previously established paths.
Clos theorem

Clos theorem:

A Clos network is strict-sense non-blocking if and only if the number of 2nd stage switch blocks fulfills the condition

$$r_2 \geq m_1 + n_3 - 1$$

- A symmetric Clos network with $m_1 = n_3 = n$ is strict-sense non-blocking if

$$r_2 \geq 2n - 1$$

Proof of Clos theorem

Proof 1:

- Let's take some SB x in the 1st stage and some SB y in the 3rd stage, which both have maximum number of connections minus one
 $=>$ x has $m_1 - 1$ and y has $n_3 - 1$ connections
- One additional connection should be established between x and y
- In the worst case, existing connections of x and y occupy distinct 2nd stage SBs
 $=>$ $m_1 - 1$ SBs for paths of x and $n_3 - 1$ SBs for paths of y
- To have a connection between x and y an additional SB is needed in the 2nd stage
 $=>$ required number of SBs is $(m_1 - 1) + (n_3 - 1) + 1 = m_1 + n_3 - 1$
Paull’s matrix and proof of Clos theorem

Proof 2:

- A connection from an idle input of a 1st stage SB x to an idle output of a 3rd stage SB y should be established.
- $m_1 - 1$ symbols can exist already in row x, because there are m_1 inputs to SB x.
- $n_3 - 1$ symbols can exist already in column y, because there are n_3 outputs from SB y.
- In the worst case, all the $(m_1 - 1 + n_3 - 1)$ symbol are distinct.
- To have an additional path between x and y, one more SB is needed in the 2nd stage.
 $\Rightarrow m_1 + n_3 - 1$ SBs are needed.
Procedure for making connections

- Keep track of symbols used by row \(x \) using an occupancy vector \(u_x \) (which has \(r_2 \) entries that represent SBs of the 2nd stage).
- Enter “1” for a symbol in \(u_x \) if it has been used in row \(x \), otherwise enter “0”.
- Likewise keep track of symbols used by column \(y \) using an occupancy vector \(u_y \).
- To set up a connection between SB \(x \) and SB \(y \) look for a position \(j \) in \(u_x \) and \(u_y \) which has “0” in both vectors.
- Amount of required computation is proportional to \(r_2 \).

\[
\begin{array}{c|c|c|c|c|c}
\hline
& 1 & 2 & 3 & j & \text{common “0”} \\
\hline
\(u_x \) & 0 & 1 & 1 & 0 & 0 \ 1 \\
\text{r}_2 & & & & & \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|c}
\hline
& 1 & 2 & 3 & j & \text{r}_2 \\
\hline
\(u_y \) & 1 & 1 & 0 & 0 & 1 \ 0 \\
\text{r}_2 & & & & & \\
\hline
\end{array}
\]

Rearrangeable networks

Slepian-Duguid theorem:

A three stage network is rearrangeable if and only if

\[
\text{r}_2 \geq \max(m_1, n_3)
\]

A symmetric Clos network with \(m_1 = n_3 = n \) is rearrangeably non-blocking if

\[
\text{r}_2 \geq n
\]

Paull’s theorem:

The number of circuits that need to be rearranged is at most

\[
\min(r_1, r_3) - 1
\]
Connection rearrangement by Paull’s matrix

- If there is no common symbol (position j) found in u_x and u_y, we look for symbols in u_x that are not in u_y and symbols in u_y not found in u_x. => a new connection can be set up only by rearrangement
- Let’s suppose there is symbol a in u_x (not in u_y) and symbol b in u_y (not in u_x) and let’s choose either one as a starting point
- Let it be a, then b is searched from the column in which a resides (in row x) - let it be row i_1 in which b is found in column j_1
- In row i_1 search for a - let this position be column j_2
- This procedure continues until symbol a or b cannot be found in the column or row visited

\[u_x = \begin{array}{cccc} 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 2 & a & b \\ r_2 \end{array} \]
\[u_y = \begin{array}{cccc} 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 2 & a & b \\ r_2 \end{array} \]

Connection rearrangement by Paull’s matrix (cont.)

- At this point connections identified can be rearranged by replacing symbol a (in rows x, i_1, i_2, ...) by b and symbol b (in columns y, j_1, j_2, ...) by a
- a and b still appear at most once in any row or column
- 2nd stage SB a can be used to connect x and y
Example of connection rearrangement by Paull’s matrix

- Let’s take a three-stage network 24x25 with $r_1=4$ and $r_3=5$
- Rearrangeability condition requires that $r_2=6$
 - let these SBs be marked by \(a, b, c, d, e \) and \(f \)

$$\Rightarrow m_1 = 6, n_1 = 6, m_2 = 4, n_2 = 5, m_3 = 6, n_3 = 5$$

Example of connection rearrangement by Paull’s matrix (cont.)

- In the network state shown below, a new connection is to be established between SB1 of stage 1 and SB1 of stage 3
- No SBs available in stage 2 to allow a new connection
- Slepian-Duguid theorem => a three stage network is rearrangeable if and only if $r_2 \geq \max(m_1, n_3)$
 - $m_1 = 6, n_3 = 5, r_2 = 6$ \(\Rightarrow \) condition fulfilled
- SBs \(c \) and \(d \) are selected to operate the rearrangement
Example of connection rearrangement by Paull’s matrix (cont.)

- Start rearrangement procedure from symbol \(c \) in row 1 and column 5

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
1 & 2 & 3 & 4 & 5 \\
\hline
1 & f & a & b & e & c \\
\hline
2 & a, b & d \\
\hline
3 & c, e, f & d \\
\hline
4 & d & c & a & b & f \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
1 & 2 & 3 & 4 & 5 \\
\hline
1 & c, f & a & b & e & d \\
\hline
2 & a, b & c & d \\
\hline
3 & d & e, f & c \\
\hline
4 & d & c & a & b & f \\
\hline
\end{array}
\]

- 5 connection rearrangements are needed to set up the required connection - Paull’s theorem !!!

Example of connection rearrangement by Paull’s matrix (cont.)

- Paull’s theorem states that the number of circuits that need to be rearranged is at most \(\min(r_1, r_3) - 1 = 3 \)
 => there must be another solution
- Start rearrangement procedure from \(d \) in row 4 and column 1
 => two connection rearrangements are needed

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
1 & 2 & 3 & 4 & 5 \\
\hline
1 & f & a & b & e & c \\
\hline
2 & a, b & d & c \\
\hline
3 & c & e, f & d \\
\hline
4 & d & c & a & b & f \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
1 & 2 & 3 & 4 & 5 \\
\hline
1 & d, f & a & b & e & c \\
\hline
2 & a, b & d & c \\
\hline
3 & c & e, f & d \\
\hline
4 & c & d & a & b & f \\
\hline
\end{array}
\]
Example of connection rearrangement by Paull’s matrix (cont.)

- In this example case, it is possible to manage with only one connection rearrangement by selecting switch blocks \(d \) and \(e \) to operate the rearrangement.
- Start rearrangement procedure from \(e \) in row 1 and column 4 => only one connection rearrangement is needed.

Recursive construction of switching networks

- To reduce cross-point complexity of three stage switches individual stages can be factored further.
- Suppose we want to construct an \(N \times N \) switching network and let \(N = pxq \).
- Since we have a symmetric switch then
 - \(m_1 = n_3 = p \) and \(r_1 = r_3 = q \)
- Considering basic relations of a Clos network
 - \(r_1 = m_2, r_2 = n_1 = m_3 \) and \(r_3 = n_2 \)
we get
 - \(m_2 = n_2 = q \)
Recursive construction of switching networks (cont.)

- Slepian-Duguid theorem states that a three state network is rearrangeable if \(r_2 \geq \max(m_1, n_3) \) \(\Rightarrow r_2 = p \) \(\Rightarrow n_1 = m_3 = p \)
- This means that a rearrangeably non-blocking Clos network is constructed recursively by connecting a \(pxp \), \(qxq \) and \(pxp \) rearrangeably non-blocking switches together in respective order \(\Rightarrow \) under certain conditions result may be a strict-sense non-blocking network
- Clos theorem states that a Clos network is strict-sense non-blocking if \(r_2 \geq m_1 + n_3 - 1 \) \(\Rightarrow r_2 = 2p - 1 \) \(\Rightarrow n_1 = m_3 = 2p - 1 \)
- This means that a strict-sense non-blocking network is constructed recursively by connecting a \(p(2p - 1) \), \(qxq \) and \((2p - 1)p \) strict-sense non-blocking switches together in respective order \(\Rightarrow \) result may be a rearrangeable non-blocking network

3-dimensional construction of a rearrangeably non-blocking network

Number of cross-points for the rearrangeable construction is

\[
p^2 q + q^2 p + p^2 q = 2 p^2 q + q^2 p
\]
3-dimensional construction of a strict-sense non-blocking network

Number of cross-points for the strictly non-blocking construction is

\[p(2p - 1)q + q^2(2p - 1) + p(2p - 1)q = 2p(2p - 1)q + q^2(2p - 1) \]

Recursive factoring of switching networks

- \(N \) can be factored into \(p \) and \(q \) in many ways and these can be factored further
- Which \(p \) to choose and how should the sub-networks be factored further?
- Doubling in the 1st and 3rd stages suggests to start with the smallest factor and recursively factor \(q = N/p \) using the next smallest factor
 => this strategy works well for rearrangeable networks
 => for strict-sense non-blocking networks width of the network is doubled
 => not the best strategy for minimizing cross-point count
- Ideal solution: low complexity, minimum number of cross-points and easy to construct => quite often conflicting goals
Recursive factoring of a rearrangeably non-blocking network

- Special case $N = 2^n$, n being a positive integer
 => a rearrangeable network can be constructed by factoring N into $p = 2$ and $q = N/2$
 => resulting network is a Benes network
 => each stage consists of $N/2$ switch blocks of size 2x2
- Factor q relates to the multiplexing factor (number of time-slots on inputs)
 => recursion continued until speed of signals low enough for real implementations

Benes network

Number of stages in a Benes network

$K = 2\log_2 N - 1$
Benes network (cont.)

- Benes network is recursively constructed of 2x2 switch blocks and it is rearrangeably non-blocking (see Clos theorem)
- First half of Benes network is called baseline network
- Second half of Benes network is a mirror image (inverse) of the first half and is called inverse baseline network
- Number of switch stages is $K = 2\log_2 N - 1$
- Each stage includes $N/2$ 2x2 switching blocks (SBs) and thus number of SBs of a Benes network is $N\log_2 N - (N/2) = N(\log_2 N - \frac{1}{2})$
- Each 2x2 SB has 4 cross-points and number of cross-points in a Benes network is $4(N/2)(2\log_2 N-1) = 4N\log_2 N - 2N \sim 4N\log_2 N$

Illustration of recursively factored Benes network