
© 2010 Jörg Ott & Carsten Bormann 1

Assignment 1:
Chunked File Transfer (CFT)

Design a protocol
Specify the protocol
Implement the protocol

© 2010 Jörg Ott & Carsten Bormann 2

File Pull: CFT

  Scenario: a file server offers files for partial download
  Like in the web (e.g., HTTP Range: header)
  Example: large source distributions
  Files may be structured (you don’t need to worry about the structure)
  Clients can request all or parts of a file

  “RETRIEVE 16384 – 32768”
  “RETRIEVE 0 – 65536”
  “RETRIEVE 131072 – ”
  “RETRIEVE 0 –”

  File content retrieval shall be according to a certain chunk size
  Fixed or dynamic (up to you)

  The chunk size and the retrieval part need not agree
  E.g., chunk size 1024 bytes
  RETRIEVE 300 – 1500
  Needs to be handled by the receiving client (not a protocol issue)

  Clients allow for complementary download in several passes

© 2010 Jörg Ott & Carsten Bormann 3

File Pull: CFT

File
storage

CFT
server

CFT
client File Y [chunk a]

RETRIEVE file Y [chunk a]

RETRIEVE file Y [x – y]

© 2010 Jörg Ott & Carsten Bormann 4

File Pull for CFT
  “Reliable” transfer of a file part from one source to a destination

  Individual transfers
  Client mode operation

  Initiate a transfer of part of a file from a server: receive data
  Server mode of operation

  Wait for requests from a client

  File transmission shall take place in chunks that are individually requested
  They may be in parallel, pipelined, or serially

  File chunk transmission should be reliable
  File chunk transmission should be somewhat performant
  File identification to be conveyed (i.e., the file name)
  File chunk identification to be chosen and conveyed (per file)

  Needs to be persistent across multiple download
  File and chunk validation information (e.g., a checksum)
  Other information?

  Support “simulated” packet loss
  Independently on both sender and receiver side

© 2010 Jörg Ott & Carsten Bormann 5

Some Issues to Consider
  How do chunk retrieval and delivering individual chunks interact?

  How to pace chunk retrieval and data delivery

  How to transmit data reasonably efficiently?
  Keeping the link/path busy

  How to do error handling?
  File does not exist?
  Chunk beyond EOF?

  How to deal with failed file transfers?
  What is a failed file transfer?
  How and when do you declare something failed?

  Client side handling
  How to know the file size if no range is specified by the user?
  Complementary downloads across multiple runs? (like FTP)

  What happens if the file changes on the server side? How to find out?
  Chunk and retrieval demands do not match?

© 2010 Jörg Ott & Carsten Bormann 6

CFT: Design and Specification
  Document (and motivate!) your design decisions

  There are many possible approaches

  Write up a short specification for your protocol
  Include sufficient detail so that one can understand and implement from it
  Litmus test

  Design together in your group
  One or two of your group writes part of the spec
  The other(s) try to understand it
  Be critical: ask yourself what is really written there (as opposed to what might be meant)

  No need to exaggerate on the spec though

  Do a short version for group discussion first: 3 – 4 slides
  Send to us by 30 March 2010, 16:00 EET
  Group discussions on 30 March, 16 – 18 E110/E111

  Update and complete your spec based upon feedback
  Hand in the written spec by 9 April 2010 (hard deadline)
  Try to implement your spec by 16 April 2010 (soft); needed for 2nd assignment

© 2010 Jörg Ott & Carsten Bormann 7

CFT: Implementation
  Realize your protocol specification in some language

  Write a single program that can act as both sender and receiver
  Distinguished by command line options

  Simulate your own packet losses
  Trashing packets in your code before sending or after receiving

  Test it!
  Does it “comply” with your spec

  Document what you did and what you learned
  How is your program structured?
  Which were the major implementation issues?
  Did you have to adjust your spec during the implementation?
  What would you do differently if you started all over again?

© 2010 Jörg Ott & Carsten Bormann 8

Packet loss simulation
  Choose a simple Markov chain

  Then, we can play with dependent and independent losses

Lost Not Lost

1-q

p

1-p q

© 2010 Jörg Ott & Carsten Bormann 9

cft [-s] [-t <port>] [-p <p>] [-q <q>]
cft <host> [-t <port>] [-p <p>] [-q <q>] [–r start:end] <file>

-s: server mode: accept incoming files from any host
 Operate in client mode if “–s” is not specified

<host> the host to send to or request from (hostname or IPv4 address)
-t: specify the port number to use (use a default if not given)
-p, -q: specify the loss probabilities for the Markov chain model

 if only one is specified, assume p=q; if neither is specified assume no loss
-r: range of data to retrieve; all if not specified
<file> the name of the file(s) to send

Further options may be useful; up to you.
Remember to do report errors (locally and across the network) as needed.
You may want to do something useful if the user aborts either process (Ctrl-C).

