P Aalto-yliopisto
|

Assignment 1:
Chunked File Transfer (CFT)

Design a protocol
Specify the protocol
Implement the protocol

© 2010 Jorg Ott & Carsten Bormann

P Aalto-yliopisto
]

File Pull: CFT

» Scenario: a file server offers files for partial download

Like in the web (e.g., HTTP Range: header)
Example: large source distributions
Files may be structured (you don’t need to worry about the structure)
Clients can request all or parts of a file
= “RETRIEVE 16384 — 32768
= “RETRIEVE 0 - 65536”
= “RETRIEVE 131072 -"
= “RETRIEVE 0 -
File content retrieval shall be according to a certain chunk size
= Fixed or dynamic (up to you)
The chunk size and the retrieval part need not agree
= E.g., chunk size 1024 bytes
= RETRIEVE 300 - 1500
= Needs to be handled by the receiving client (not a protocol issue)

Clients allow for complementary download in several passes

© 2010 Jorg Ott & Carsten Bormann

P Aalto-yliopisto
|

File Pull: CFT

RETRIEVE file Y [x — y]

CFT CFT File
client File Y [chunk a] server storage

RETRIEVE file Y [chunk a]

© 2010 Jorg Ott & Carsten Bormann

P Aalto-yliopisto
]

File Pull for CFT

» “Reliable” transfer of a file part from one source to a destination
e Individual transfers

» Client mode operation
e |nitiate a transfer of part of a file from a server: receive data

» Server mode of operation
e Wait for requests from a client

» File transmission shall take place in chunks that are individually requested
* They may be in parallel, pipelined, or serially

File chunk transmission should be reliable

File chunk transmission should be somewhat performant

File identification to be conveyed (i.e., the file name)

File chunk identification to be chosen and conveyed (per file)
* Needs to be persistent across multiple download

File and chunk validation information (e.g., a checksum)
Other information?

v v v Vv

v v

» Support “simulated” packet loss
¢ Independently on both sender and receiver side

© 2010 Jorg Ott & Carsten Bormann

P Aalto-yliopisto
|

Some Issues to Consider

» How do chunk retrieval and delivering individual chunks interact?
® How to pace chunk retrieval and data delivery

» How to transmit data reasonably efficiently?
e Keeping the link/path busy

» How to do error handling?
e File does not exist?
e Chunk beyond EOF?

» How to deal with failed file transfers?
e \What is a failed file transfer?
e How and when do you declare something failed?

» Client side handling
* How to know the file size if no range is specified by the user?

e Complementary downloads across multiple runs? (like FTP)
= What happens if the file changes on the server side? How to find out?

e Chunk and retrieval demands do not match?

© 2010 Jorg Ott & Carsten Bormann

P Aalto-yliopisto
]

CFT: Design and Specification

» Document (and motivate!) your design decisions
e There are many possible approaches

» Write up a short specification for your protocol
® Include sufficient detail so that one can understand and implement from it

e Litmus test
= Design together in your group
= One or two of your group writes part of the spec
= The other(s) try to understand it
= Be critical: ask yourself what is really written there (as opposed to what might be meant)

* No need to exaggerate on the spec though

» Do a short version for group discussion first: 3 — 4 slides
e Send to us by 30 March 2010, 16:00 EET
e Group discussions on 30 March, 16 — 18 E110/E111

» Update and complete your spec based upon feedback
e Hand in the written spec by 9 April 2010 (hard deadline)

© 2010 Jorg Ott & Carsten Bormann

e Try to implement your spec by 16 April 2010 (soft); needed for 2" assignment

P Aalto-yliopisto
|

CFT: Implementation

» Realize your protocol specification in some language

» Write a single program that can act as both sender and receiver
e Distinguished by command line options

» Simulate your own packet losses
e Trashing packets in your code before sending or after receiving

» Testit!
e Does it “comply” with your spec

» Document what you did and what you learned

How is your program structured?

Which were the major implementation issues?

Did you have to adjust your spec during the implementation?

[]
[]
[]
e What would you do differently if you started all over again?

© 2010 Jorg Ott & Carsten Bormann

P Aalto-yliopisto
]

Packet loss simulation

» Choose a simple Markov chain
e Then, we can play with dependent and independent losses

1-q

© 2010 Jorg Ott & Carsten Bormann

P Aalto-yliopisto
|

cft [-s] [-t <port>] [-p <p>] [-g <g>]
cft <host> [-t <port>] [-p <p>] [-g <g>] [-r start:end] <file>

-s: server mode: accept incoming files from any host

Operate in client mode if “—s” is not specified
<host> the host to send to or request from (hostname or IPv4 address)
-t specify the port number to use (use a default if not given)

-p, -q: specify the loss probabilities for the Markov chain model
if only one is specified, assume p=q; if neither is specified assume no loss

-r: range of data to retrieve; all if not specified
<file> the name of the file(s) to send

Further options may be useful; up to you.
Remember to do report errors (locally and across the network) as needed.
You may want to do something useful if the user aborts either process (Ctrl-C).

© 2010 Jorg Ott & Carsten Bormann

