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Reliability 

Protocol Design – S-38.3159 
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Basic Purpose of a Protocol 
  Synchronize state information across two or more nodes 

  State can be anything 
  Some data item 
  Existence and parameters of a communication relationship 
  Parameters for and result of an operation 
  Contents of a database or file 

  State synchronization should be “reliable”… 
  To be achieved with a minimal number of message exchanges 
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Distributed Systems Fundamentals 
  In a distributed system, each node has their own view of reality 

  Information takes time in transit 
  Not all information arrives intact 
  Information does not arrive in order 

  There is no global view 
  There is no global concept of “simultaneous” 
  Entities are independent and may operate in parallel 

  Uncertainty what the other peer(s) do or believe at a given point in time 

  Synchronizing entities require effort (=overhead) 
  The closer the synchronization, the higher the overhead 
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Distributed System Fundamentals (2) 
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Some System Setup Alternatives 
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Multi-Hop Scenario 2 
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Multi-Hop Scenario 3a 
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Multi-Hop Scenario 3b 
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What can go “wrong”? 
  Effects of a link 

  Bit errors (individual vs. bursty bit errors) 
  Frame losses (individual vs. bursty losses)  packet losses 
  Latency (medium access, physical propagation, and serialization delay) 
  Frame reordering (e.g., due to individual losses and retransmissions or multiplexing) 

  Effects caused in a router or due to routing 
  Packet losses (even distribution, burstiness – depends on queuing scheme) 
  Packet corruption 
  Packet duplication (typically due to routing along different paths) 
  Packet delay (varies depending on queue size, i.e., offered load) 
  Packet reordering (typically due to load sharing along different paths) 

  Errors and other effects in the network 
  Routing loops or black holing (causing packet loss) 
  Router crashes or link unavailability (causing temporary unreacheability and variation in QoS, packet 

loss) 
  Route changes (due to failures, for load balancing, etc.) causing variation is path characteristics 
  Memory or software errors in routers 
  Unidirectional or otherwise asymmetric links  
  Congestion (from legitimate traffic or DoS: causing packet loss and latency) 
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What can go “wrong”? (2) 
  Effects in the end system 

  Packet losses due to buffer overflow (too many interrupts, CPU overload, …) 
  Application failure or crashes 
  Malfunctions (partial or complete, malicious or accidental) 
  Failures (silent or reported/observable, byzantine, …) 
  Overload (DoS or just plain heavy load) 

  Effects due to mobility 
  Rerouting leads to different latencies (and other transmission characteristics) 
  Rerouting may lead to packet loss, packet bursts, reordering 
  Temporary unavailability 
  (possibly changes in identification) 

  And other things you may and those you may not expect… 
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Reliability is Probabilistic 
  Variety of mechanisms available to deal with things that go wrong to improve 

reliability 
  Checksums, CRCs, MACs to detect bit errors or frame errors in packets 

  Avoid processing an incorrect frame (which may lead to confusion in the state machine) 

  Sequence numbers to detect missing packets 

  Implicit assumption: errors are of temporary nature 
  E.g., retransmissions will work after several attempts 
  Depending on the error probability this may be sooner or later 
  Protocols define their own “patience” (aka timeout), i.e., how long or how often they are 

willing to try 

  Most reliable protocols fail if the error condition persists long enough 
  A reliable protocol need not fail if it just tries long enough 

  Even if peer breaks and the communication context is lost 
(in which case this would need to re-established, which will take even longer) 
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Reliability is a Tradeoff 
  Reliability (probability) vs. delay 
  Reliability (probability) vs. overhead 

  Processing, bandwidth consumption, local state, … 
  Efficiency depends on reliability mechanisms in use 
  Probability depends on reliability mechanisms in use 

  Reliability mechanisms chosen depending on 
  Application and its semantics 
  Operational environment (types of errors, error/loss rate, RTT, b/w, …) 
  Communication setup (including number of peers) 
  Tolerance with respect to delay, lost or corrupted contents, etc. 
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Reliability Mechanisms 
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Some Questions for Reliability Protocols 
  What is the overhead incurred? 

  What type of overhead is incurred? 
  More bits per packet? More packets?  …? 

  When is the overhead incurred? 
  Always vs. only in case of failures? 

  What type of errors to deal with? 

  How much does the sender (want to) know about the receiver(s)? 
  Reception status: (when) did data really arrive (and can a buffer be freed)? 

  How many receivers can the protocol support? 
  How heterogeneous can the receiver group be? 

  What does the achievable performance depend upon? 
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Sample Communication Model: TCP 

Sender Receiver App. App. 

 
Send buffer Receive buffer 

sent  rcvd available 
DATA DATA DATA 

ACK ACK 

receive window 
(rwin) Data in flight 

receive window 
(rwin) 

“Pipe” of a 
certain capacity 

(bandwidth x delay) 
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Dealing with Ordering and Overload 
  Ordering: Sequence numbers (or timestamps) 

  Sequence numbers (count messages, packets, bytes)  
  Issue: avoid wrap around in fast networks 

  Overload in the endpoint 
  Flow control 

  Typical windowing protocols (using seq numbers): receiver reports available buffer space 
  Issue: update frequency and ability to “keep the pipe full” 

  Rate control 
  (Predetermined) agreement between receiver and sender 
  May be updated (occasionally) 

  Overload in the network: drop packets 
  Congestion control  later 
  Rate control peered with resource reservations 

  Allows to influence the drop probability and delay in favor of the application 
  Reliability mechanisms need to be applied nevertheless 



© 2010 Jörg Ott & Carsten Bormann 17 

1. Simple Lock-Step Protocol 
  Send data and wait for acknowledgement 
  Timeout to trigger retransmission 
  Trivial but very limited 
  Example: Trivial File Transfer Protocol (TFTP) 
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2. Cumulative ACK with Go-back-N 
  Window-based mechanism allows multiple outstanding packets 

  constrained by sequence number space and buffer size 

  Timeouts or out-of-order reception trigger retransmissions 
  Variants: HDLC (LAPB/D/F), X.25 layer 3, plain old TCP, … 
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3. Selective Acknowledgements 
  Window-based but explicit acknowledgment of received packets 
  Receiver keeps out-of-order packets (e.g., TCP SACK) 
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© 2010 Jörg Ott & Carsten Bormann 20 

4. Simple NACK Protocol 
  Optimistic assumption: packets will arrive 

  Report only failures: negative acknowledgement 

  Specific mechanisms needed for last packet (e.g. ACK) 
  Specific mechanisms needed for flow control and buffer mgmt 
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5. Forward Error Correction (1) 
  Basic assumption: errors will occur 

  Increase reception probability up front:  
  Send packets + redundancy packets 

  Simple XOR-based (parity) FEC 
  P_fec = P1 XOR P2 XOR P3 XOR … XOR Pn 

  More complex FEC: e.g., Reed-Solomon codes, fountain codes, … 
  Generate N packets out of K packets: copes with losing up to N–K  packets 

  Trading off overhead for delay and feedback 
  No need to wait for a NACK or a timeout 

#1 #2 #3 #4 

F(1,2) F(3,4) 

Data packets 

FEC packets + + 

#1 #2 

F(1,2) 

#2 + 

Issue: Increases 
bandwidth requirements 
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5. Forward Error Correction and TCP 
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6. Forward Error Correction (2) 
  Interleaving 

  Make simple FEC schemes work better with burst losses 

  Distribute packets or packet contents for transmission 
  Avoid consecutive packet erasures in case of (burst) losses 
  Avoid loss of large consecutive data portions in case of single packet losses 

  Drawbacks 
  Re-ordering causes additional delay at the receiver 
  Increases buffer space requirements 

1 2 3 4 5 6 7 

1 4 7 2 5 8 3 

8 9 

6 9 
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7. Forward Error Correction (3) 
  Application-specific FEC 
  Example: Fully redundant transmission 

  Primarily suitable for small pieces of information 

  Repeat complete pieces of information in other packets 
  Adjacent or spread out 
  Maintains the packet rate but increases data rate 
  Dependent on regular packet transmission 

6 7 8 9 

6 5 3 7 6 4 8 7 5 9 8 6 
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8. Unequal Error Protection 
  Observation: not all parts of a packet are equally important 

  Beginning of packet contains headers/parameters, more relevant contents 
  Holds for both audio and video 

  Uneven Level Protection (ULP) 
  Create independent parity packets for different parts of packets 
  Allows for selectively more overhead for the more important parts 

  Related thoughts: partial checksums 
  Live with bit errors in the less important parts (rather than dropping a packet) 
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© 2010 Jörg Ott & Carsten Bormann 26 

9. Network Coding 
  FEC: Source coding 

  Redundancy (e.g., parity packets) created at the sender 
  But: may place unnecessary on large parts of a path 
  And: considers only a single communication relationship (flows) 

  Network coding: different approach to reliability 
  Collecting evidence about packets 
  Not necessarily the plain packets themselves 
  May merge packets from different flows 
  Linear combination of any number of input packets 
  Simplest case: XOR 
  Receivers collect linear combinations and decode packets as soon as they can 
  May improve performance, but may require some degree of redundancy 
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9. Network Coding Example 
  Network coding may reduce the 

delivery time and link utilization 
  But routers and end systems need 

to conspire  

Areas of application 
  Flooding/replication-based routing  

  E.g., in sensor networks, DTNs 

  Link layer for WLANs 
  Optimizing utilization of the wireless link 
  SIGCOMM 2007 (“XORs in the air”) 

  Physical layer 
  SIGCOMM 2008 
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10. Soft State 
  Reliability is typically about “hard state” 

  Explicitly created and successful creation is confirmed 
  Needs to be explicitly changed or removed 

  Alternative: “soft state” 
  State is created upon packet reception 
  Needs to be refreshed periodically 
  Times out otherwise 

  Disappears automatically in case of peer failure 

  Feedback may be provided 
  E.g. Negative if state creation or modification fails 

  Issue: request or response lost vs. operation successful 
  The sender never really knows! 

  Workable for small piece of information 
  May or may not change 

  Examples: RSVP, some routing protocols, watchdogs 
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Issues with Reliability 
  Shared state needed between sender and receiver 

  Receiver window, sequence number, last acknowledgement, timeout, … 
  Implicitly provided at connection setup time for connection-oriented 

communications 
  What about stand-alone transactions? 

  Messages need to be self-contained 
  All responsibility is with the sender 

(since the receiver does not even know that communication is imminent) 

  Initialization is a potential for Denial-of-Service (DoS) attacks 

  Timeout: choosing proper values 
  Overhead: choosing the right combination of mechanisms 
  Ideal: adapt everything dynamically to the (changing) environment 
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Reliable Transport Summary (1) 
  State creation (aka Connection Setup) 

  N-way handshake (TCP: 3-way, SCTP: 4-way, other: 2-way) 
  Create shared state at senders and receivers 
  Issue: Denial-of-service attacks 

  Error detection 
  CRC for bit errors 
  Sequence numbers against packet losses 
  Alternative naming schemes for data (name each piece of data unique) 

  Error correction 
  Positive or negative acknowledgements, FEC, soft state, application-specific 
  Timeout + retransmissions 
  Different mechanisms can be combined 
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Reliable Transport Summary (2) 
  Ordering 

  Sequence numbers (or other references), buffering at the receiver 
  Optional in some cases (e.g. SCTP, TCP urgent data) 

  Flow control 
  Sliding window mechanism (explicit setting of window size) 
  Implicit flow control (delayed ACKs): not relevant in the Internet 
  Rate control 

  Reliability = 
Error detection + error handling (+ ordering) + flow control 
  There is no such thing like reliable communications 

  Bit errors, packet losses and network partitioning may not be repairable 
  Peers are notified of communication failures (e.g. connection teardown) 

  Degree of reliability defined by probability of communication failure 
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Reliable Transport Summary (3) 
  Congestion Control 

  Avoiding losses due to network overload 
  TCP-style mechanisms: quick response to congestion, high variation 
  Rate-based mechanisms (e.g. TFRC): slower adaptation, smoother 
  To be discussed later 
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Issues with Group Communications 
  Potentially redefines the semantics of reliability 
  One-to-many (single sender) vs. many-to-many (multiple senders) 

  Need not be IP multicast: transport/application layer replication (overlays) suffice 

  “Connection” semantics: When has a “connection setup” succeeded? 
  When all intended members have joined? 
  When a quorum of intended members have joined? 
  When a certain subset of the intended members have joined? 

  How does “connection setup” work? 
  Contact peers out of band? (how to make someone join a group…) 

  Orderly “connection” release can be signaled in-band 

  What are failure criteria for “connections”? 
  If any one member fails? 
  If a quorum of members is no longer available? 
  If any of or all of a certain subset of members fails? 

  Can/should unicast-derived transport layer semantics be applied? 
  Reliable multicast semantics much more dependent on the application! 
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Error Detection 
  Checksum (CRC) against bit errors 

  Similar to unicast transport 

  Sequence numbers to detect packet losses 
  Multi-sender case: per sender sequence numbers 

  e.g. pairs of (transport address, sequence number) 
  Requires additional state in receivers 
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Error Correction (1) 

  Positive acknowledgements do not scale! (usable for small groups only) 
  ACK implosion problem at the sender 
  Different approaches needed 

  Negative Acknowledgements (NACKs) 
  Cumulative or selective NACKs 
  Issue: when to release buffered data at the sender 

  Tradeoff between reliability and buffer size 

  Issue: hard to determine final state at the receivers 
  Issue: NACK implosion in case of correlated losses 

  Retransmissions 
  Via multicast or via unicast 
  From the sender or some other receiver (router assist?) 

  Extensive use of FEC and network coding mechanisms 
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Unicast Topology: Sender and Receiver 
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Multicast Topology: Senders and Receivers 
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Multicast Topology: Senders and Receivers 
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Error, Flow, and Congestion Control 

  A sender is supposed to throttle its transmission rate to match 
reception capabilities of the receiver and the network path to it. 

  Which receiver? 
  All receivers? 
  A certain (subset of) receiver(s)? 
  A quorum of receivers? 

  Adjusting to the worst receiver will inevitably stall the transmission 
  Compromises needed 

  Bad receivers drop out, NACKs from bad receivers are not honored, ... 

  Group communication parameters used to define minimum requirements 
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Reliability 
  Again: reliability is probabilistic! 

  Depends on many factors 
  Packet losses, their pattern and correlation, congestion on the path 
  Buffering at the sender and time window available for retransmissions 
  FEC and other transport parameters 

  Individual vs. group reliability 

  Sample reliability semantics: 
  A receiver will receive packets after joining a group and before leaving 
  The receiver will receive packets ordered per sender 
  The receiver will most likely receive all packets 
  The receiver will be notified about each packet missed 
  The receiver will be forced to leave the group if reception rate drops under a 

certain threshold 
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Ordering 
  Per sender ordering trivial 

  Individual sequence numbers 

  Multi-sender ordering more difficult 
  Different semantics conceivable 
  Often pushed to the application layer for efficiency 

  Causal ordering 
  All dependent messages are delivered to all receivers in the same order 

  Msg B depends on Msg A if Msg A was received at a host before B is sent by this host 

  Uses message sequence vectors with one entry per node (limited scalability) 

  Global ordering 
  All messages are delivered to all receivers in the same order 
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New Issues 
  Scalability 

  What group sizes does a multicast transport protocol support? 

  Atomicity 
  Did all the receivers receive the data? 
  Combination with ordering 

  Partitioning and recovery 
  Network topology changes may lead to a group being split 
  Which of those parts survives? 
  What happens if partitions merge, i.e. the group is being joined together again? 
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Relaxing Reliability Requirements 
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Examples for Relaxed Reliability (1) 
  Roles of nodes: Does everyone have to get everything? 

  Rather for group than for point-to-point communications 
  Some nodes may perform functions that require them to get all the data 
  Other nodes may drop out if they are not successful receiving everything 

  Nodes may also be considered equal and just a quorum is needed 
  For N communicating nodes, K-reliability means that only K out of 

N nodes need to receive the data 
  Useful and sufficient e.g. for replication 
  More difficult if the group attempts to obtain a coherent view 

  … 
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Examples for Relaxed Reliability (2) 
  Is all information equally important? 

  Is correctness of all information equally important? 
  Is timeliness of all information equally important? 

  Unequal error protection 
  Protect certain pieces of information better than others 

  Example 1: bits and bytes: 
  Provide a CRC and/or FEC only for parts of a packet (typically the beginning) 

  Allow less important parts of contents to contain bit errors (e.g., for audio) 
  But protect the parts essential for reproduction 

  Will result in lower frame loss rate, e.g., in wireless networks 
  Example 2: packets 

  Provide FEC and/or retransmissions only for certain packets 
  The more essential part of the contents (e.g., video I frames, information changing rarely) 
  Accept losses for information that is updated frequently anyway or less important 
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Relaxed Reliability (3) 
  How long is the information transmitted valid or useful? 

  Somewhat related to the soft state discussion 

  Observation: once data is passed to the TCP layer, the data is 
doomed to be retransmitted until confirmed (or connection loss) 
  Regardless of whether the data is still useful at this point 
  Nice to have: allow to remove data again once no longer needed 

  Cross-layer interaction 

  Example: meter readings 
  A complete log of readings (temperature, load, etc.) may be useful 
  But regular measurements (e.g., once every 100ms) will invalidate old data 

  Just transmit periodically; possibly support limited retransmissions 

  Yet capturing exceptional conditions may be important 
  So that this may be combined with more reliability depending on the values 
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Further Relaxations 
  Sequencing 

  Reliability but no sequential delivery for all the data 
  Distinguishing multiple independently sequenced data streams 

  Mixing reliable and unreliable transmission 
  IETF: Stream Control Transmission Protocol 

  Origin: telephony signaling but now much more widespread applicability 

  Congestion control without reliability 
  IETF: Datagram Congestion Control Protocol (DCCP) 
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Discussion: Semantics of Reliability 
  Semantics of reliability ultimately depends on the application 

  Hop-by-hop 
  Support by network elements on the path (such as routers) 

  Pro: More efficient retransmissions (not always all the time) 
  Cons: Routes may change, routers would spend resources (CPU, memory) 

  Support by intermediaries (hopefully) near the path (“overlays”) 
  Issues: Introduces additional points of failure, may cause suboptimal routing, … 

  Regardless of hop by hop support (optimization):  
the application is only interested in the end-to-end result of an operation 

  Beware of interacting control loops (hop-by-hop + end-to-end) 
  End-to-end 

  Implementation exclusively on the end systems 
  Other elements may optimize but should not be able to have a negative impact  

  What does end-to-end mean? (or: what is the end?) 
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Example: Careful File Transfer 
  Move a file from a disk attached to machine A to a disk connected 

to machine B via some network 
  Ensure complete and identical availability of the file on B’s disk 

afterwards 

  Proper reception, processing, and storage can only be assured by 
the application itself 
  It is the only entity aware of the real requirements 
  Needs to implement proper validation mechanisms anyway 

  Transport and lower layer protocols can help performance 
  The proper tradeoff requires careful thought! 
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Low- vs. High-Level Implementation 
  Lower layer implementation 

  May simplify applications or perform functions more efficiently 
  May be shared by numerous applications 
  But may be enforced on applications that do not need it 
  Operating on incomplete information may be less efficient 

  Higher layer implementation 
  May be tailored to an application‘s needs 
  But may require the application (protocol) designer to deal with the issue 

  Choice of several layers (network, transport, application) 

  Trade-off is important! 
  Implies properly identifying “the ends” 
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How much Reliability is needed? 
  Again: Reliability semantics ultimately depend on the application 

  Design and engineering tradeoff 
  Rely on existing transport protocols (TCP, more flexible now with SCTP) 

  Do not have to worry about getting the specification and the implementation right 
  Application protocol is often sufficient hassle already 
  Considerations on application-specific end-to-end reliability is required nevertheless 

  Do-it-yourself 
  Ultimate flexibility (and effort required) 
  Combine the mechanisms tailored to the application needs 
  Application Layer Framing (ALF) 

-  Coined in the context of application-protocol-aware reliable multicast 

  There is typically no single right solution 


