
© 2010 Jörg Ott & Carsten Bormann 1

Reliability

Protocol Design – S-38.3159

© 2010 Jörg Ott & Carsten Bormann 2

Basic Purpose of a Protocol
  Synchronize state information across two or more nodes

  State can be anything
  Some data item
  Existence and parameters of a communication relationship
  Parameters for and result of an operation
  Contents of a database or file

  State synchronization should be “reliable”…
  To be achieved with a minimal number of message exchanges

State S
A B

State S

Some information

© 2010 Jörg Ott & Carsten Bormann 3

Distributed Systems Fundamentals
  In a distributed system, each node has their own view of reality

  Information takes time in transit
  Not all information arrives intact
  Information does not arrive in order

  There is no global view
  There is no global concept of “simultaneous”
  Entities are independent and may operate in parallel

  Uncertainty what the other peer(s) do or believe at a given point in time

  Synchronizing entities require effort (=overhead)
  The closer the synchronization, the higher the overhead

© 2010 Jörg Ott & Carsten Bormann 4

Distributed System Fundamentals (2)

State S
A B

State S

Info A

Info B
State S,T

State S,T

Transit Time

State S

A B

State T,S

Info A

Info B

State T

State S,T

Parallel Operation

State S
A B

Info A

Info B
State T

State S,T

Information Loss


State S

A B

State T,S

Info A

Info B State T

State S,T

Information Reordering

© 2010 Jörg Ott & Carsten Bormann 5

Some System Setup Alternatives

A B 1) Direct link

A B R R R 2) Multiple hops

A B R R
3) Multiple hops
 with intermediary
 support

I

© 2010 Jörg Ott & Carsten Bormann 6

Multi-Hop Scenario 2

A

B

© 2010 Jörg Ott & Carsten Bormann 7

Multi-Hop Scenario 3a

A

B

© 2010 Jörg Ott & Carsten Bormann 8

Multi-Hop Scenario 3b

A

B

© 2010 Jörg Ott & Carsten Bormann 9

What can go “wrong”?
  Effects of a link

  Bit errors (individual vs. bursty bit errors)
  Frame losses (individual vs. bursty losses)  packet losses
  Latency (medium access, physical propagation, and serialization delay)
  Frame reordering (e.g., due to individual losses and retransmissions or multiplexing)

  Effects caused in a router or due to routing
  Packet losses (even distribution, burstiness – depends on queuing scheme)
  Packet corruption
  Packet duplication (typically due to routing along different paths)
  Packet delay (varies depending on queue size, i.e., offered load)
  Packet reordering (typically due to load sharing along different paths)

  Errors and other effects in the network
  Routing loops or black holing (causing packet loss)
  Router crashes or link unavailability (causing temporary unreacheability and variation in QoS, packet

loss)
  Route changes (due to failures, for load balancing, etc.) causing variation is path characteristics
  Memory or software errors in routers
  Unidirectional or otherwise asymmetric links
  Congestion (from legitimate traffic or DoS: causing packet loss and latency)

© 2010 Jörg Ott & Carsten Bormann 10

What can go “wrong”? (2)
  Effects in the end system

  Packet losses due to buffer overflow (too many interrupts, CPU overload, …)
  Application failure or crashes
  Malfunctions (partial or complete, malicious or accidental)
  Failures (silent or reported/observable, byzantine, …)
  Overload (DoS or just plain heavy load)

  Effects due to mobility
  Rerouting leads to different latencies (and other transmission characteristics)
  Rerouting may lead to packet loss, packet bursts, reordering
  Temporary unavailability
  (possibly changes in identification)

  And other things you may and those you may not expect…

© 2010 Jörg Ott & Carsten Bormann 11

Reliability is Probabilistic
  Variety of mechanisms available to deal with things that go wrong to improve

reliability
  Checksums, CRCs, MACs to detect bit errors or frame errors in packets

  Avoid processing an incorrect frame (which may lead to confusion in the state machine)

  Sequence numbers to detect missing packets

  Implicit assumption: errors are of temporary nature
  E.g., retransmissions will work after several attempts
  Depending on the error probability this may be sooner or later
  Protocols define their own “patience” (aka timeout), i.e., how long or how often they are

willing to try

  Most reliable protocols fail if the error condition persists long enough
  A reliable protocol need not fail if it just tries long enough

  Even if peer breaks and the communication context is lost
(in which case this would need to re-established, which will take even longer)

© 2010 Jörg Ott & Carsten Bormann 12

Reliability is a Tradeoff
  Reliability (probability) vs. delay
  Reliability (probability) vs. overhead

  Processing, bandwidth consumption, local state, …
  Efficiency depends on reliability mechanisms in use
  Probability depends on reliability mechanisms in use

  Reliability mechanisms chosen depending on
  Application and its semantics
  Operational environment (types of errors, error/loss rate, RTT, b/w, …)
  Communication setup (including number of peers)
  Tolerance with respect to delay, lost or corrupted contents, etc.

© 2010 Jörg Ott & Carsten Bormann 13

Reliability Mechanisms

© 2010 Jörg Ott & Carsten Bormann 14

Some Questions for Reliability Protocols
  What is the overhead incurred?

  What type of overhead is incurred?
  More bits per packet? More packets? …?

  When is the overhead incurred?
  Always vs. only in case of failures?

  What type of errors to deal with?

  How much does the sender (want to) know about the receiver(s)?
  Reception status: (when) did data really arrive (and can a buffer be freed)?

  How many receivers can the protocol support?
  How heterogeneous can the receiver group be?

  What does the achievable performance depend upon?

© 2010 Jörg Ott & Carsten Bormann 15

Sample Communication Model: TCP

Sender Receiver App. App.


Send buffer Receive buffer

sent  rcvd available
DATA DATA DATA

ACK ACK

receive window
(rwin) Data in flight

receive window
(rwin)

“Pipe” of a
certain capacity

(bandwidth x delay)

© 2010 Jörg Ott & Carsten Bormann 16

Dealing with Ordering and Overload
  Ordering: Sequence numbers (or timestamps)

  Sequence numbers (count messages, packets, bytes)
  Issue: avoid wrap around in fast networks

  Overload in the endpoint
  Flow control

  Typical windowing protocols (using seq numbers): receiver reports available buffer space
  Issue: update frequency and ability to “keep the pipe full”

  Rate control
  (Predetermined) agreement between receiver and sender
  May be updated (occasionally)

  Overload in the network: drop packets
  Congestion control  later
  Rate control peered with resource reservations

  Allows to influence the drop probability and delay in favor of the application
  Reliability mechanisms need to be applied nevertheless

© 2010 Jörg Ott & Carsten Bormann 17

1. Simple Lock-Step Protocol
  Send data and wait for acknowledgement
  Timeout to trigger retransmission
  Trivial but very limited
  Example: Trivial File Transfer Protocol (TFTP)
A B

DATAx

ACK

DATAy

ACK

DATAz

ACK

A B
DATAx

ACK



Ti
m

eo
ut

A B

ACK



Ti
m

eo
ut

DATAx DATAx

DATAx

© 2010 Jörg Ott & Carsten Bormann 18

2. Cumulative ACK with Go-back-N
  Window-based mechanism allows multiple outstanding packets

  constrained by sequence number space and buffer size

  Timeouts or out-of-order reception trigger retransmissions
  Variants: HDLC (LAPB/D/F), X.25 layer 3, plain old TCP, …
A B

D (1)

ACK (2)

D (2)

ACK (5)

A B

ACK (1)

A B

Ti
m

eo
ut

D (3) D (4) D (5)


D (1), …, D (4)

ACK (1)
D (2), …, D (4)

ACK (4)


ACK (3)

D (1), …, D (4)

D (4)

ACK (4)

© 2010 Jörg Ott & Carsten Bormann 19

3. Selective Acknowledgements
  Window-based but explicit acknowledgment of received packets
  Receiver keeps out-of-order packets (e.g., TCP SACK)

A B

ACK (1, 3)


D (1), …, D (4)

ACK (1,3, 4)
D (2)

ACK (1 – 4)

© 2010 Jörg Ott & Carsten Bormann 20

4. Simple NACK Protocol
  Optimistic assumption: packets will arrive

  Report only failures: negative acknowledgement

  Specific mechanisms needed for last packet (e.g. ACK)
  Specific mechanisms needed for flow control and buffer mgmt

A B
D (1), …, D (10)

ACK (13)

 NACK (9)

D(11), D(12), D(13,L),D(9)

A B
D (1), …, D (9,L)

ACK (9)



D (9,L)

Ti
m

eo
ut

© 2010 Jörg Ott & Carsten Bormann 21

5. Forward Error Correction (1)
  Basic assumption: errors will occur

  Increase reception probability up front:
  Send packets + redundancy packets

  Simple XOR-based (parity) FEC
  P_fec = P1 XOR P2 XOR P3 XOR … XOR Pn

  More complex FEC: e.g., Reed-Solomon codes, fountain codes, …
  Generate N packets out of K packets: copes with losing up to N–K packets

  Trading off overhead for delay and feedback
  No need to wait for a NACK or a timeout

#1 #2 #3 #4

F(1,2) F(3,4)

Data packets

FEC packets + +

#1 #2

F(1,2)

#2 +

Issue: Increases
bandwidth requirements

© 2010 Jörg Ott & Carsten Bormann 22

5. Forward Error Correction and TCP

© 2010 Jörg Ott & Carsten Bormann 23

6. Forward Error Correction (2)
  Interleaving

  Make simple FEC schemes work better with burst losses

  Distribute packets or packet contents for transmission
  Avoid consecutive packet erasures in case of (burst) losses
  Avoid loss of large consecutive data portions in case of single packet losses

  Drawbacks
  Re-ordering causes additional delay at the receiver
  Increases buffer space requirements

1 2 3 4 5 6 7

1 4 7 2 5 8 3

8 9

6 9

© 2010 Jörg Ott & Carsten Bormann 24

7. Forward Error Correction (3)
  Application-specific FEC
  Example: Fully redundant transmission

  Primarily suitable for small pieces of information

  Repeat complete pieces of information in other packets
  Adjacent or spread out
  Maintains the packet rate but increases data rate
  Dependent on regular packet transmission

6 7 8 9

6 5 3 7 6 4 8 7 5 9 8 6

© 2010 Jörg Ott & Carsten Bormann 25

8. Unequal Error Protection
  Observation: not all parts of a packet are equally important

  Beginning of packet contains headers/parameters, more relevant contents
  Holds for both audio and video

  Uneven Level Protection (ULP)
  Create independent parity packets for different parts of packets
  Allows for selectively more overhead for the more important parts

  Related thoughts: partial checksums
  Live with bit errors in the less important parts (rather than dropping a packet)

Packet A

Packet B

Packet C

Packet D

Level 0 Level 1

Level 0

Level 0 Level 1

50% FEC

25% FEC

© 2010 Jörg Ott & Carsten Bormann 26

9. Network Coding
  FEC: Source coding

  Redundancy (e.g., parity packets) created at the sender
  But: may place unnecessary on large parts of a path
  And: considers only a single communication relationship (flows)

  Network coding: different approach to reliability
  Collecting evidence about packets
  Not necessarily the plain packets themselves
  May merge packets from different flows
  Linear combination of any number of input packets
  Simplest case: XOR
  Receivers collect linear combinations and decode packets as soon as they can
  May improve performance, but may require some degree of redundancy

© 2010 Jörg Ott & Carsten Bormann 27

9. Network Coding Example
  Network coding may reduce the

delivery time and link utilization
  But routers and end systems need

to conspire

Areas of application
  Flooding/replication-based routing

  E.g., in sensor networks, DTNs

  Link layer for WLANs
  Optimizing utilization of the wireless link
  SIGCOMM 2007 (“XORs in the air”)

  Physical layer
  SIGCOMM 2008

A B

R S

X

Y

1 1 1

1 1

1 1

A B

A

A B

B
A+B

A×B A×B

A B A B

© 2010 Jörg Ott & Carsten Bormann 28

10. Soft State
  Reliability is typically about “hard state”

  Explicitly created and successful creation is confirmed
  Needs to be explicitly changed or removed

  Alternative: “soft state”
  State is created upon packet reception
  Needs to be refreshed periodically
  Times out otherwise

  Disappears automatically in case of peer failure

  Feedback may be provided
  E.g. Negative if state creation or modification fails

  Issue: request or response lost vs. operation successful
  The sender never really knows!

  Workable for small piece of information
  May or may not change

  Examples: RSVP, some routing protocols, watchdogs

A B



State (1)

State (1)

State (1)

State (2)

State (2)

State (2)

State (4)  State (3)

Ti
m

eo
ut


A fails or

terminates

B discards state

© 2010 Jörg Ott & Carsten Bormann 29

Issues with Reliability
  Shared state needed between sender and receiver

  Receiver window, sequence number, last acknowledgement, timeout, …
  Implicitly provided at connection setup time for connection-oriented

communications
  What about stand-alone transactions?

  Messages need to be self-contained
  All responsibility is with the sender

(since the receiver does not even know that communication is imminent)

  Initialization is a potential for Denial-of-Service (DoS) attacks

  Timeout: choosing proper values
  Overhead: choosing the right combination of mechanisms
  Ideal: adapt everything dynamically to the (changing) environment

© 2010 Jörg Ott & Carsten Bormann 30

Reliable Transport Summary (1)
  State creation (aka Connection Setup)

  N-way handshake (TCP: 3-way, SCTP: 4-way, other: 2-way)
  Create shared state at senders and receivers
  Issue: Denial-of-service attacks

  Error detection
  CRC for bit errors
  Sequence numbers against packet losses
  Alternative naming schemes for data (name each piece of data unique)

  Error correction
  Positive or negative acknowledgements, FEC, soft state, application-specific
  Timeout + retransmissions
  Different mechanisms can be combined

© 2010 Jörg Ott & Carsten Bormann 31

Reliable Transport Summary (2)
  Ordering

  Sequence numbers (or other references), buffering at the receiver
  Optional in some cases (e.g. SCTP, TCP urgent data)

  Flow control
  Sliding window mechanism (explicit setting of window size)
  Implicit flow control (delayed ACKs): not relevant in the Internet
  Rate control

  Reliability =
Error detection + error handling (+ ordering) + flow control
  There is no such thing like reliable communications

  Bit errors, packet losses and network partitioning may not be repairable
  Peers are notified of communication failures (e.g. connection teardown)

  Degree of reliability defined by probability of communication failure

© 2010 Jörg Ott & Carsten Bormann 32

Reliable Transport Summary (3)
  Congestion Control

  Avoiding losses due to network overload
  TCP-style mechanisms: quick response to congestion, high variation
  Rate-based mechanisms (e.g. TFRC): slower adaptation, smoother
  To be discussed later

© 2010 Jörg Ott & Carsten Bormann 33

Issues with Group Communications
  Potentially redefines the semantics of reliability
  One-to-many (single sender) vs. many-to-many (multiple senders)

  Need not be IP multicast: transport/application layer replication (overlays) suffice

  “Connection” semantics: When has a “connection setup” succeeded?
  When all intended members have joined?
  When a quorum of intended members have joined?
  When a certain subset of the intended members have joined?

  How does “connection setup” work?
  Contact peers out of band? (how to make someone join a group…)

  Orderly “connection” release can be signaled in-band

  What are failure criteria for “connections”?
  If any one member fails?
  If a quorum of members is no longer available?
  If any of or all of a certain subset of members fails?

  Can/should unicast-derived transport layer semantics be applied?
  Reliable multicast semantics much more dependent on the application!

© 2010 Jörg Ott & Carsten Bormann 34

Error Detection
  Checksum (CRC) against bit errors

  Similar to unicast transport

  Sequence numbers to detect packet losses
  Multi-sender case: per sender sequence numbers

  e.g. pairs of (transport address, sequence number)
  Requires additional state in receivers

© 2010 Jörg Ott & Carsten Bormann 35

Error Correction (1)

  Positive acknowledgements do not scale! (usable for small groups only)
  ACK implosion problem at the sender
  Different approaches needed

  Negative Acknowledgements (NACKs)
  Cumulative or selective NACKs
  Issue: when to release buffered data at the sender

  Tradeoff between reliability and buffer size

  Issue: hard to determine final state at the receivers
  Issue: NACK implosion in case of correlated losses

  Retransmissions
  Via multicast or via unicast
  From the sender or some other receiver (router assist?)

  Extensive use of FEC and network coding mechanisms

© 2010 Jörg Ott & Carsten Bormann 36

Unicast Topology: Sender and Receiver

S

R1

R

R

p=0.01

p=0.01

p=0.01

© 2010 Jörg Ott & Carsten Bormann 37

Multicast Topology: Senders and Receivers

S

R7 R8 R9 R2 R3

R4

R1

R R

R R

R

R R5

R

R6

© 2010 Jörg Ott & Carsten Bormann 38

Multicast Topology: Senders and Receivers

S

R7 R8 R9 R2 R3

R4

R1

R R

R R

R

R R5

R

R6

p=0.01

p=0.01

p=0.01

p=0.03

p=0.03 p=0.05

p=0.08

p=0 p=0.1
p=0.002

p=0.001

p=0.004 p=0.01

p=0.02

© 2010 Jörg Ott & Carsten Bormann 39

Error, Flow, and Congestion Control

  A sender is supposed to throttle its transmission rate to match
reception capabilities of the receiver and the network path to it.

  Which receiver?
  All receivers?
  A certain (subset of) receiver(s)?
  A quorum of receivers?

  Adjusting to the worst receiver will inevitably stall the transmission
  Compromises needed

  Bad receivers drop out, NACKs from bad receivers are not honored, ...

  Group communication parameters used to define minimum requirements

© 2010 Jörg Ott & Carsten Bormann 40

Reliability
  Again: reliability is probabilistic!

  Depends on many factors
  Packet losses, their pattern and correlation, congestion on the path
  Buffering at the sender and time window available for retransmissions
  FEC and other transport parameters

  Individual vs. group reliability

  Sample reliability semantics:
  A receiver will receive packets after joining a group and before leaving
  The receiver will receive packets ordered per sender
  The receiver will most likely receive all packets
  The receiver will be notified about each packet missed
  The receiver will be forced to leave the group if reception rate drops under a

certain threshold

© 2010 Jörg Ott & Carsten Bormann 41

Ordering
  Per sender ordering trivial

  Individual sequence numbers

  Multi-sender ordering more difficult
  Different semantics conceivable
  Often pushed to the application layer for efficiency

  Causal ordering
  All dependent messages are delivered to all receivers in the same order

  Msg B depends on Msg A if Msg A was received at a host before B is sent by this host

  Uses message sequence vectors with one entry per node (limited scalability)

  Global ordering
  All messages are delivered to all receivers in the same order

© 2010 Jörg Ott & Carsten Bormann 42

New Issues
  Scalability

  What group sizes does a multicast transport protocol support?

  Atomicity
  Did all the receivers receive the data?
  Combination with ordering

  Partitioning and recovery
  Network topology changes may lead to a group being split
  Which of those parts survives?
  What happens if partitions merge, i.e. the group is being joined together again?

© 2010 Jörg Ott & Carsten Bormann 43

Relaxing Reliability Requirements

© 2010 Jörg Ott & Carsten Bormann 44

Examples for Relaxed Reliability (1)
  Roles of nodes: Does everyone have to get everything?

  Rather for group than for point-to-point communications
  Some nodes may perform functions that require them to get all the data
  Other nodes may drop out if they are not successful receiving everything

  Nodes may also be considered equal and just a quorum is needed
  For N communicating nodes, K-reliability means that only K out of

N nodes need to receive the data
  Useful and sufficient e.g. for replication
  More difficult if the group attempts to obtain a coherent view

  …

© 2010 Jörg Ott & Carsten Bormann 45

Examples for Relaxed Reliability (2)
  Is all information equally important?

  Is correctness of all information equally important?
  Is timeliness of all information equally important?

  Unequal error protection
  Protect certain pieces of information better than others

  Example 1: bits and bytes:
  Provide a CRC and/or FEC only for parts of a packet (typically the beginning)

  Allow less important parts of contents to contain bit errors (e.g., for audio)
  But protect the parts essential for reproduction

  Will result in lower frame loss rate, e.g., in wireless networks
  Example 2: packets

  Provide FEC and/or retransmissions only for certain packets
  The more essential part of the contents (e.g., video I frames, information changing rarely)
  Accept losses for information that is updated frequently anyway or less important

© 2010 Jörg Ott & Carsten Bormann 46

Relaxed Reliability (3)
  How long is the information transmitted valid or useful?

  Somewhat related to the soft state discussion

  Observation: once data is passed to the TCP layer, the data is
doomed to be retransmitted until confirmed (or connection loss)
  Regardless of whether the data is still useful at this point
  Nice to have: allow to remove data again once no longer needed

  Cross-layer interaction

  Example: meter readings
  A complete log of readings (temperature, load, etc.) may be useful
  But regular measurements (e.g., once every 100ms) will invalidate old data

  Just transmit periodically; possibly support limited retransmissions

  Yet capturing exceptional conditions may be important
  So that this may be combined with more reliability depending on the values

© 2010 Jörg Ott & Carsten Bormann 47

Further Relaxations
  Sequencing

  Reliability but no sequential delivery for all the data
  Distinguishing multiple independently sequenced data streams

  Mixing reliable and unreliable transmission
  IETF: Stream Control Transmission Protocol

  Origin: telephony signaling but now much more widespread applicability

  Congestion control without reliability
  IETF: Datagram Congestion Control Protocol (DCCP)

© 2010 Jörg Ott & Carsten Bormann 48

Discussion: Semantics of Reliability
  Semantics of reliability ultimately depends on the application

  Hop-by-hop
  Support by network elements on the path (such as routers)

  Pro: More efficient retransmissions (not always all the time)
  Cons: Routes may change, routers would spend resources (CPU, memory)

  Support by intermediaries (hopefully) near the path (“overlays”)
  Issues: Introduces additional points of failure, may cause suboptimal routing, …

  Regardless of hop by hop support (optimization):
the application is only interested in the end-to-end result of an operation

  Beware of interacting control loops (hop-by-hop + end-to-end)
  End-to-end

  Implementation exclusively on the end systems
  Other elements may optimize but should not be able to have a negative impact

  What does end-to-end mean? (or: what is the end?)

© 2010 Jörg Ott & Carsten Bormann 49

Example: Careful File Transfer
  Move a file from a disk attached to machine A to a disk connected

to machine B via some network
  Ensure complete and identical availability of the file on B’s disk

afterwards

  Proper reception, processing, and storage can only be assured by
the application itself
  It is the only entity aware of the real requirements
  Needs to implement proper validation mechanisms anyway

  Transport and lower layer protocols can help performance
  The proper tradeoff requires careful thought!

© 2010 Jörg Ott & Carsten Bormann 50

Network 1
(link)

Example: Careful File Transfer

R1

Network 1

Network 2
(link) A B

R
A N

N

N N

N

N

N

N

R2

End-to-end

© 2010 Jörg Ott & Carsten Bormann 51

Low- vs. High-Level Implementation
  Lower layer implementation

  May simplify applications or perform functions more efficiently
  May be shared by numerous applications
  But may be enforced on applications that do not need it
  Operating on incomplete information may be less efficient

  Higher layer implementation
  May be tailored to an application‘s needs
  But may require the application (protocol) designer to deal with the issue

  Choice of several layers (network, transport, application)

  Trade-off is important!
  Implies properly identifying “the ends”

© 2010 Jörg Ott & Carsten Bormann 52

How much Reliability is needed?
  Again: Reliability semantics ultimately depend on the application

  Design and engineering tradeoff
  Rely on existing transport protocols (TCP, more flexible now with SCTP)

  Do not have to worry about getting the specification and the implementation right
  Application protocol is often sufficient hassle already
  Considerations on application-specific end-to-end reliability is required nevertheless

  Do-it-yourself
  Ultimate flexibility (and effort required)
  Combine the mechanisms tailored to the application needs
  Application Layer Framing (ALF)

-  Coined in the context of application-protocol-aware reliable multicast

  There is typically no single right solution

