

HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Electronics, Communications and Automation

© 2009 Mikko Kiiski 1

Introduction to
Network Programming
Using Java

HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Electronics, Communications and Automation

© 2009 Mikko Kiiski 2

Java starting point

● Development platform
– Unix/Linux/Windows available in the department or

computing center

– More information http://www.tkk.fi/cc/computers/

– Using Sun JDK

● Deployment platform
– Your program must run on desktop at Maari-A

HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Electronics, Communications and Automation

© 2009 Mikko Kiiski 3

Java starting point (2)

● Working with development tools
● Using IDE (Eclipse, NetBeans, JCreator ...)
● Use existing libraries (Apache Commons ...)
● Use of existing protocol implementations is forbidden
● Automate compiling (Apache Ant) and testing (JUnit)
● Both programs are available in TKK linux machines

● Try version control systems to share your code
with in your group

● http://goblin.tkk.fi/c++/tutorials/svn.html

HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Electronics, Communications and Automation

© 2009 Mikko Kiiski 4

Java starting point (3)

● Information sources
– Today’s slides and examples

– Sun Java Documentation

– Examples and tutorials available via search engines

– Send mail to assistants (if everything else has
failed)

HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Electronics, Communications and Automation

© 2009 Mikko Kiiski 5

Basic concepts

● ... concerning Java programming in general
● Environment
● Handling Streams
● Handling Channels
● Handling byte arrays

● ... concerning network programming
● Resolving hostname
● Handling address information
● Creating Sockets
● Sending and receiving data using blocking / non-blocking

methods

HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Electronics, Communications and Automation

© 2009 Mikko Kiiski 6

Parse Command Line in Java
public static void main(String[] args)public static void main(String[] args)

// String array containing the program arguments
// Example iterating through array
for (int i = 0; i < args.length; i++) {

String type = args[i++];
String value = args[i];
if(type.equalsIgnoreCase("-l")){

// use value
setExampleParameter(value);

}
}

Or use the existing packages like:

- Apache Commons CLI, see http://commons.apache.org/cli/

HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Electronics, Communications and Automation

© 2009 Mikko Kiiski 7

Resolve hostname

● Transform a symbolic name into a protocol-specific
address

● Select the most suitable implementation for the specific
task

● InetAddress class for 32-bit and 128-bit IP addresses
used for unicast or multicast traffic

● InetSocketAddress class is an implementation for the IP
address and port number pair used by sockets for
binding and connecting

● API classes
● java.net.InetAddress
● java.net.InetSocketAddress

HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Electronics, Communications and Automation

© 2009 Mikko Kiiski 8

Socket Creation (blocking)
java.net.Socket

java.net.ServerSocket

java.net.DatagramSocket

java.net.MulticastSocket

java.net.Socket()
 Creates an unconnected socket, with the system-default type of
SocketImpl.
java.net.Socket(InetAddress address, int port)
 Creates a stream socket and connects it to the specified port number

at the specified IP address.

java.net.ServerSocket()
 Creates an unbound server socket.
java.net.ServerSocket(int port)
 Creates a server socket, bound to the specified port.

Opening a socket and using a stream for communication

HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Electronics, Communications and Automation

© 2009 Mikko Kiiski 9

Socket Creation (non-blocking)
java.nio.channels.SocketChannel

java.nio.channels.ServerSocketChannel

InetSocketAddress isa
 = new InetSocketAddress(targetAddrs, targetPort);

// Connect

SocketChannel sChannel
= SocketChannel.open();

sChannel.configureBlocking(false);
boolean connected = sChannel.connect(isa);

if(connected == false){
 sChannel.finishConnect();

}

Opening a socket and using a channel for communication

HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Electronics, Communications and Automation

© 2009 Mikko Kiiski 10

Sending data (blocking)

● Connection-oriented (TCP)
● java.net.Socket(InetAddress address, int port)

– Creates a stream socket and connects it to the
– specified port number at the specified IP address.

● java.net.Socket.getOutputStream()
– Write into OutputStream using suitable Stream writers

HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Electronics, Communications and Automation

© 2009 Mikko Kiiski 11

Sending data (blocking)

● Connectionless (UDP)
● java.net.DatagramSocket(int port)

– Constructs a datagram socket and binds it to the
specified port on the local host machine.

● java.net.DatagramPacket(byte[] buf, int length,
InetAddress address, int port)

– Constructs a datagram packet for sending packets of
length to the specified port number on the specified host.

● java.net.DatagramSocket.send(DatagramPacket p)
– Sends a datagram packet from this socket.

HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Electronics, Communications and Automation

© 2009 Mikko Kiiski 12

Receiving (blocking)

● Data reception (TCP) using a Socket
● InputStream Socket.getInputStream()
● Read InputStream using suitable classes

● Data reception (UDP) using a DatagramSocket
● DatagramSocket.receive(DatagramPacket pPacket)
● Receives a datagram packet from this socket. The

DatagramPacket contains the bytes transmitted.
● To modify socket behavior check the setter methods of

the specified implementation

HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Electronics, Communications and Automation

© 2009 Mikko Kiiski 13

Sending data (non-blocking)

//
// SocketChannel sChannel

try {
String message = "PD course";

ByteBuffer buf = ByteBuffer.wrap(message.getBytes());
sChannel.write(content);

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Electronics, Communications and Automation

© 2009 Mikko Kiiski 14

Receiving data (non-blocking)

//
// SocketChannel sChannel
// CharsetDecoder decoder

ByteBuffer dbuf = ByteBuffer.allocateDirect(1024);

CharBuffer cb = null;
int readCount = -1;

try {
dbuf.clear();
readCount = sChannel.read(dbuf);

dbuf.flip();
cb = decoder.decode(dbuf);

dbuf.flip();
} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();
}

HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Electronics, Communications and Automation

© 2009 Mikko Kiiski 15

Byte array operations

// array operations
byte[] array = new byte[64];
int arrayLength = array.lenght;
byte[] content = new byte[arrayLength];
System.arraycopy(array, 0, content, 0, arrayLength);

// ByteBuffer
String example = “Hello”;
ByteBuffer buffer = ByteBuffer.wrap(example.getBytes());
ByteBuffer buffer2 = buffer.dublicate();
buffer2.order(ByteOrder.BIG_ENDIAN);
byte[] array2 = buffer2.array();

Using byte array or java.nio.ByteBuffer

Or use existing libraries like Apache Commons IO
http://commons.apache.org/io/api-release/index.html

HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Electronics, Communications and Automation

© 2009 Mikko Kiiski 16

Concurrency

//
// ReceiverThread implements Runnable interface
ReceiverThread reveicerConnection = new ReceiverThread();

receiver = new Thread(reveicerConnection);

receiver.start();

Event Based (Single Thread Handling many connections)

Using Threads

See event based solution from examples using java.nio.Channels

For the beginners read tutorials like
http://java.sun.com/docs/books/tutorial/essential/concurrency/
http://java.sun.com/j2se/1.5.0/docs/guide/concurrency/index.html
http://www.ibm.com/developerworks/edu/j-dw-javathread-i.html

HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Electronics, Communications and Automation

© 2009 Mikko Kiiski 17

Others (1)

● Try to keep your classes as simply as possible
● group a certain set of functionalities into a specified class

● Use design patterns to get a controlled
structure for your program

● For example Observer – Observable pattern can be used
to deliver the received data for multiple users

● i.e. Server must replicate data for multiple receivers:
– Socket container (source) implements Observable interface
– Client connection creates an instance of the client container that

implements an Observer interface
– When client container is created the client observer is registered

to the observable source

HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Electronics, Communications and Automation

© 2009 Mikko Kiiski 18

Others (2)

To handle shutdown signal use addShutdownHook()
method for Runtime class
Runtime.getRuntime().addShutdownHook(new Thread() {

 public void run() {
 System.out.println ("Called at shutdown.");

 }
 });

Other alternative is to use handle() method in sun.misc.Signal
class to catch signals
public static void main(String[] args) throws Exception {

 Signal.handle(new Signal("INT"), new SignalHandler () {
 public void handle(Signal sig) {

 System.out.println(
 "Received a interrupt!!");

 }
 });
 //

 }

Remember always to terminate program and release resources

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

