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Resource Consumption 
  Execution of protocols consumes resources in 

  End hosts 
  The network 

  Links 
  Network elements 

  Where resources are finite: 
  Use them for most important application objectives 
  Use them productively (throughput ≠ goodput) 

  Don’t perform a protocol step that cannot be completed for lack of other resources 

  Control of end system resources: implementation issue 
  Control of network resources: shared between hosts and network 

  Internet tenet: Network does not know about application! 
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Case study: Internet congestion collapse 
  1988: 

  implementations sent data as they saw fit (BSD UNIX: LAN oriented) 
  Internet usage was growing 
  Where congestion occurred ➔ retransmissions ➔ more offered load 

  Previously non-congested links get congested, too 
  Collapse! 

  “Fixes” such as the Nagle algorithm only provided temporary relief 

  Issue: How to decide whether to send another packet? 
  Based on the existing network? 
  Based on an upgraded network that provided more information? 
  Based on administrative control (“reserved” capacity)? 
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Flashback: X.25 
  X.25 performed flow control per connection 

  Congestion: “Back-pressure” to previous network elements 
  Credit-based algorithm for per-connection network element buffer management 

  Why not do this for IP as well? 
  Network would have to know about application layer connections 
  Large systems: Hard to control phasing/oscillation effects 

  IP “back pressure”: ICMP Source quench 
  Send back information about congestion to source 
  “Request to slow down” 
  Issues: 

  Never quantitatively defined 
  Reverse congestion causes loss of source quench ➔ instability! 
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Van Jacobson’s 1988 SIGCOMM paper 
  Congestion information has to be carried forward to receiver and 

“reflected back” 
  Receiver is already sending ACKs for packets that have arrived 

intact 
  Remaining “small problem”: 

  How to make use of that information in an effective control regime 

  (you know the rest) 
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TCP Optimizations 

  Fast retransmission 
  using only timeouts leads to long idle times 

  implementations can’t estimate RTT that quickly (or don’t at all) 

  receivers react to segments received out-of-order 
  acknowledge last correctly received segment again 
  keep out-of-order segments 

  sender acts upon reception of three duplicate acks 
  retransmit first non-acknowledged segment 
  probably fills the (single segment) gap at the receiver 

  Fast recovery 
  duplicate ACKs indicate that most packets do get through (no timeout) 
 cut congestion window in half (instead of setting to 1 MSS) 
 don’t slow start 
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TCP Real-World Example 
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TCP Throughput Formula  
  TCP throughput = f(RTT, MSS, p) 

  Floyd approximation: Bit rate ~  

  Padhye equation (b is implementation constant, usually 2) 
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TCP throughput vs. loss vs. RTT 
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TCP Congestion Control Summary 
  TCP’s additional algorithms control transmission rate 

  Quickly respond to packet losses in the network (AIMD) 
  Optionally, may take advance measures if increasing RTT is observed 

  TCP sender responds to incoming ACKs 
  Initiates transmissions or fast retransmissions 
  “ACK Clocking” 
  Timeouts only used in rare circumstances if no packets get through 

  Resulting transmission rate approximated by Padhye equation 
  Measure for TCP fairness in the network 

  Fair sharing among TCP, UDP (e.g. RTP), and other flows 

  CC may also be implemented as rate-based algorithm 
  E.g. TCP-friendly Rate Control (TFRC) 
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TCP-Friendly Rate Control (TFRC) 
  Rate calculated at the sender  

  Based on a slight simplification of the Padhye equation 
  Closed loop algorithm 

  Assumptions and Features 
  Usable only for streams with roughly constant packet size 
  Smoother reaction to congestion (does not half the rate upon loss) 
  Applicable to e.g. audio / video traffic 
  Not generally recommended for plain bulk data transfer 

  Receiver provides feedback about loss event rate (p) and RTT 
  Provided about once per RTT (unless fewer data is sent) 
  Includes Explicit Congestion Notification (ECN) as observed loss 

  Sender adjusts transmission rate according to feedback 
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Basic TFRC Operation 
  Sender 

  Sends DATA packets 
  Sequence number, time stamp, current RTT estimate 

  Measures RTT from received feedback 
  Calculates weighted moving average 

  Calculates sending rate from received feedback 
  Adjusts transmission rate based upon feedback 

  Cuts rate in half if no feedback received for 2*RTT 
  Rate increase limited to factor 2 per RTT 

  Receiver 
  Receives data packets, observes timing, losses 
  Aggregates individual losses per RTT into loss events 
  Return feedback frequently to sender 

  Sequence number, sender + reception timestamp (adjusted according to local delay) 
  Weighted packet loss event rate p 
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Congestion Control without Reliability 
  Rate-based congestion control using TFRC 

  Requires regular and timely feedback from receivers: order of once per RTT 

  Example: Datagram Congestion Control Protocol (DCCP) 
  Non-reliable transport protocol supporting congestion control 

  Was meant to address congestion-unaware UDP applications  
  No fixed congestion control scheme: uses pluggable modules instead 

  CCID2: TCP-like, CCID3: TFRC 

  Example: TFRC for RTP 
  Needs RTT readings at both sender and receiver 

  Sender calculates RTT and informs receiver 
  Introduces non-backward-compatible extensions to RTP and RTCP 

  Mechanisms based upon AVP Feedback profile (AVPF) 
  Increased feedback rate (once per RTT) 
  Use smaller RTCP packets (reduce the number of compound packets) 
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Application Layer Congestion Control 
  End-to-end principle: transport layer has only partial knowledge 

  Typical assumption: continuous data transfer (“big file”) 

  Unrealistic for many applications 
  Short message exchanges 
  Transport does not know much data outstanding for transmission 

  Application semantics may implicitly provide congestion control 
  Lock-step protocols 

  SIP transactions in a dialog, e.g., MESSAGE exchanges 
  TFTP 
  Original NFS 

  Anything beyond simple lockstep requires careful thought 
  So: Don’t try this at home: difficult to get it right… 



© 2009 Jörg Ott & Carsten Bormann 

HELSINKI UNIVERSITY OF TECHNOLOGY 
DEPARTMENT OF COMMUNICATIONS AND NETWORKING 

15 

What if we can modify the network? 
But why bother (what are the remaining problems)? 
  At low throughput, congestion signalling is wasteful  

(all the dropped packets are non-productive) 
  ECN: Explicit Congestion Notification 

  At high throughput, the signalling rate is low ➔ slow convergence 
  Start at a higher rate (initial window ≅ 4 KB, RFC 3390) 
  Get more information about the path from the outset (“Quickstart”) 

  A congestion loss cannot be distinguished from a corruption loss 
  Corruption losses lead to lower throughput 

  (problem only if the corruption losses are higher than the congestion loss equivalent to the 
desirable throughput) 

  Hard to fix unless ECN became universally deployed 
  Would remove “emergency exit” packet drop from router’s choices 
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Quickstart 
  Idea: Let routers indicate available capacity 
  IP option used in TCP handshake indicates sender’s desired data rate 

  Each router in the path can reduce rate request to available capacity 
  Field is echoed back in SYN ACK  at the transport layer (TCP option) 
  Also: use special Nonce to detect cheating in the receiver’s report 

  Backwards compatibility:   
Find out if there are non-participating routers in the path 
  Send with random TTL, also send a random “Quickstart TTL” 
  Approving router decrements both IP TTL and “Quickstart TTL” 
  Difference between (reduced) TTLs is echoed back 
  Old routers change the difference ➔ Sender abandons Quickstart 

  Sender combines allowed rate with measured RTT to initialize congestion 
window 
  Sends “Report approved rate” to allow on-path routers to reduce allocation 
  Packets are then sent rate-paced (no ACK clocking available) 
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Guiding principles behind Quickstart 
  Backwards compatibility, allowing gradual introduction 

  Quickstart must only be enabled if all routers agree 
  Pre-Quickstart routers cannot agree, so any old router on path disables Quickstart 

  Special considerations for tunnels and initial packet losses/ECN indications 

  No incentive to cheat 
  Without the random nonces, a receiver could lie about 

  The fact that a quickstart rate was approved 
  The actual rate that has been approved 

  Make sure lying does not provide an advantage 
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Some Issues with QuickStart 
  Generally: adds complexity and introduces risks 
  Hosts 

  How do you know your transmission rate in advance (what to indicate in the QS request)? 

  Routers 
  How to allocate QuickStart shares fairly? 
  How much state to maintain (and much allocation to verify)? 
  How to clean up failed QS state? 

  Routers may no see packets in the reverse direction (path asymmetry) 
  Misconfiguration (or bugs) may lead to increased congestion 

  Attacks 
  Hosts can generate many quickstart requests and thus increase router load 
  Hosts can request data rate and never utilize it (and may spoofed IP source address) 

  Routers would require state to check 

  Deployment 
  Needs to be deployed all the way along the path (= all routers): incentive? 
  Does this go through middleboxes? 
  Security/stability implications 
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ECN: Explicit Congestion Notification 
  Replace packet loss as a signal by a special bit in each packet 

  “This packet would have been lost” 
  Backwards compatibility: 

  Sender must indicate ECN capability of transport (ECT) 
  Non-ECT packets are dropped as previously usual 

  No incentive to cheat 
  Unmarked packets carry a bit that would be destroyed by marking  

  “ECN Nonce”, RFC 3540 
  Receivers echo back checksum (XOR value) of all these bits 

  Lying receiver is detected by sender detecting mismatch in Nonce echo 

  Two bits in IP packet, four values: 
  00 = old (non-ECT) 
  01, 10 = ECT (the two possible values carry one bit of ECN nonce) 
  11 = marked by router as “would have been lost” (destroys nonce bit) 
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That was too easy… 

  Multicasting 
  Security 
  Mobility 
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Congestion Control and Multicasting 
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Approaches to Multicast Congestion Control 
  Rate-based congestion control based upon feedback 

  E.g. using TFRC mechanism 
  TCP-friendly Multicast Congestion Control (TFMCC) Building Block 
  To be used e.g. with NORM, RTP, … 
  Feedback loop from many receivers to sender 

  Window-based mechanisms 
  TCP-style approach 
  Feedback loop from dedicated (possibly changing) receiver to sender 

  Layered coding 
  Receiver-based congestion control without feedback loop 
  Receivers use IP multicast JOIN / LEAVE to control their reception rate 

  Many of today‘s deployments don‘t use congestion control at all 
  Often deployed in controlled environment using a simple rate control 
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TFMCC 
  Principle operation borrows from TFRC 

  Uses same formula, similar state variables, etc. 

  But adjustments for multicast operation needed 
  Control the amount and type of feedback received 
  Distribute workload and amount of state to be maintained 

  Receiver-based operation 
  Receivers have unique identifiers 
  Data rate calculations done at receivers X_r 

  Receivers need to measure RTT to sender 
  Send feedback with timestamps, echoed back by sender 

  Packet loss rate calculations as before 
  Feedback suppression scheme for all but worst receiver 
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TFMCC (2) 
  Sender organizes feedback retrieval into rounds 

  Indicates feedback round number 
  Indicates Current Limiting Receiver (CLR) 
  Sender selects receivers to respond in each round 

  Receivers with measured RTT > MAX_RTT 
  Receivers with calculated rate X_r < X_supp (suppression threshold) 

  Includes reception timestamps for limited number of receivers 
  Enable RTT measurements 

  Sender uses feedback to update transmission rate 
  Update CLR based upon feedback from last round 

  Decreases in the transmission rate take effect immediately 
  Also takes into account CLR crashes (e.g. no reports for > 10 RTTs) 

  Cuts transmission rate in half if no report is received for 4 RTTs 
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PGMCC 
  Uses TCP-style window-based congestion control 

  Dynamically determines a receiver for the control loop 
  Selected receiver: “ACKer” 
  Aims to locate the receiver which would have the lowest throughput if there was 

a TCP connection set up 
  Sender calculates transmission rate for each receiver based upon feedback 

  Using Padhye equation for TCP throughput 

  Chooses ACKer based upon this information 
  ACKer indicates if it is to leave the session 

  Feedback from this ACKer control transmission rate 
  Window-based scheme 
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Layered Coding 
  Multiple “layers” transmit data at different rates 

  Ordering / transmission rates need to be known up front 

  Very simple receiver loop 
  JOIN layer n 
  Observe reception rate, packet loss 
  If no packet loss:  n=n+1 
  If congestion observed: LEAVE layer n, n=n-1 

  Past issue: LEAVE latency (IGMPv1 only) 
  Idea: transmit at constantly reducing data rate on each layer 

  Automatically makes reception rate drop to zero after some time 
  Congestion-free receivers continue JOINing new layers 
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Congestion Control and Security 
Why would someone want to subvert Fairness? 
  Sender: deliver better service (at cost of other senders) 
  Network: deliver better service (at cost of other networks) 
  Receiver: receive better service (at cost of other receivers) 
  Sender: cause damage 
  Receiver: cause damage 

  Unlikely for large players (detection is almost assured) 
  Essentially rules out senders and network 

  Receiver: 
  “TCP optimization software” to receive better service 
  (D)DoS sender by causing it to send to this receiver above fair share 
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Example: ACK attack 
  Observation: TCP ACKs are not protected (no nonce etc.) 
  Receiver could ACK everything (even if losses did occur) 

  Sender will ramp up quickly (exponential slow start) until first full RTT is lost 
  Not useful for receiving better service (there will be gaps) 
  Useful for causing damage 

  Why doesn’t this happen more often? 
  Changing OS’s TCP is hard work 
  There are easier angles of attack 
  It’s relatively easy to subvert a large number of consumer PCs (➔botnets) 
  It would be much harder to actually change all the various OS versions 
  Phew… 
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Congestion Control and Mobility 
  Path characteristics in the Internet change 

  Filling and emptying queues lead to delay variation 
  Queue length determine congestion-induced packet losses 

  Usually changes occur somewhat gradually 
  (relative to RTT) 
  Exception: route changes (rather infrequently, often involve other collateral damage) 

  Mobility may lead to more drastic changes 
  Due to mobile IP route optimization 

  From indirect path via home agent to shortest path between CN and MN 
  Due to handover of a mobile node moving between different stub networks 
  Due to a mobile node’s switching between different access technologies 
  Simply due to wireless networks being involved 

  Changes invisible to the transport 
  Present architecture assumes that (mobile) IP and transport layer don’t talk 
  Healthy: last hop may not be involved in mobility protocol 
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Mobility-induced Changing Path Properties (1) 
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Mobility-induced Changing Path Properties (2) 
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Multi-attachment problem 
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Limitations to Congestion Control 
  Elastic applications 

  Typical reference: bulk data transfer 
  Not time critical + always data to send 

  Inelastic applications 
  Real-time media streams 
  Limited number of operational points 
  Reducing rate below minimum may equate loss of service 

  Example: File download and phone call share DSL access link 

  So what does “fairness” really mean here?  
  Flow vs. application vs. user vs. … 
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Concluding Thoughts 
  Congestion control is required 

  May serve the community (and you will get flak if you don’t) 
  May improve performance of your own application 

  Congestion scale may be limited by the application 
  Choice of (a few) discrete rates only 
  But: minimal QoS cannot be enforced by the application alone 

  Fairness at large 
  Different notions and granularities 
  Fairness over time? 
  Charging for congestion? 


