
© 2009 Jörg Ott & Carsten Bormann 1

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Resource Consumption
and Fairness

Protocol Design – S-38.3157

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

2

Resource Consumption
  Execution of protocols consumes resources in

  End hosts
  The network

  Links
  Network elements

  Where resources are finite:
  Use them for most important application objectives
  Use them productively (throughput ≠ goodput)

  Don’t perform a protocol step that cannot be completed for lack of other resources

  Control of end system resources: implementation issue
  Control of network resources: shared between hosts and network

  Internet tenet: Network does not know about application!

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

3

Case study: Internet congestion collapse
  1988:

  implementations sent data as they saw fit (BSD UNIX: LAN oriented)
  Internet usage was growing
  Where congestion occurred ➔ retransmissions ➔ more offered load

  Previously non-congested links get congested, too
  Collapse!

  “Fixes” such as the Nagle algorithm only provided temporary relief

  Issue: How to decide whether to send another packet?
  Based on the existing network?
  Based on an upgraded network that provided more information?
  Based on administrative control (“reserved” capacity)?

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

4

Flashback: X.25
  X.25 performed flow control per connection

  Congestion: “Back-pressure” to previous network elements
  Credit-based algorithm for per-connection network element buffer management

  Why not do this for IP as well?
  Network would have to know about application layer connections
  Large systems: Hard to control phasing/oscillation effects

  IP “back pressure”: ICMP Source quench
  Send back information about congestion to source
  “Request to slow down”
  Issues:

  Never quantitatively defined
  Reverse congestion causes loss of source quench ➔ instability!

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

5

Van Jacobson’s 1988 SIGCOMM paper
  Congestion information has to be carried forward to receiver and

“reflected back”
  Receiver is already sending ACKs for packets that have arrived

intact
  Remaining “small problem”:

  How to make use of that information in an effective control regime

  (you know the rest)

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

6

TCP Optimizations

  Fast retransmission
  using only timeouts leads to long idle times

  implementations can’t estimate RTT that quickly (or don’t at all)

  receivers react to segments received out-of-order
  acknowledge last correctly received segment again
  keep out-of-order segments

  sender acts upon reception of three duplicate acks
  retransmit first non-acknowledged segment
  probably fills the (single segment) gap at the receiver

  Fast recovery
  duplicate ACKs indicate that most packets do get through (no timeout)
 cut congestion window in half (instead of setting to 1 MSS)
 don’t slow start

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

7

TCP Real-World Example

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

8

TCP Throughput Formula
  TCP throughput = f(RTT, MSS, p)

  Floyd approximation: Bit rate ~

  Padhye equation (b is implementation constant, usually 2)

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

9

TCP throughput vs. loss vs. RTT

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

10

TCP Congestion Control Summary
  TCP’s additional algorithms control transmission rate

  Quickly respond to packet losses in the network (AIMD)
  Optionally, may take advance measures if increasing RTT is observed

  TCP sender responds to incoming ACKs
  Initiates transmissions or fast retransmissions
  “ACK Clocking”
  Timeouts only used in rare circumstances if no packets get through

  Resulting transmission rate approximated by Padhye equation
  Measure for TCP fairness in the network

  Fair sharing among TCP, UDP (e.g. RTP), and other flows

  CC may also be implemented as rate-based algorithm
  E.g. TCP-friendly Rate Control (TFRC)

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

11

TCP-Friendly Rate Control (TFRC)
  Rate calculated at the sender

  Based on a slight simplification of the Padhye equation
  Closed loop algorithm

  Assumptions and Features
  Usable only for streams with roughly constant packet size
  Smoother reaction to congestion (does not half the rate upon loss)
  Applicable to e.g. audio / video traffic
  Not generally recommended for plain bulk data transfer

  Receiver provides feedback about loss event rate (p) and RTT
  Provided about once per RTT (unless fewer data is sent)
  Includes Explicit Congestion Notification (ECN) as observed loss

  Sender adjusts transmission rate according to feedback

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

12

Basic TFRC Operation
  Sender

  Sends DATA packets
  Sequence number, time stamp, current RTT estimate

  Measures RTT from received feedback
  Calculates weighted moving average

  Calculates sending rate from received feedback
  Adjusts transmission rate based upon feedback

  Cuts rate in half if no feedback received for 2*RTT
  Rate increase limited to factor 2 per RTT

  Receiver
  Receives data packets, observes timing, losses
  Aggregates individual losses per RTT into loss events
  Return feedback frequently to sender

  Sequence number, sender + reception timestamp (adjusted according to local delay)
  Weighted packet loss event rate p

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

13

Congestion Control without Reliability
  Rate-based congestion control using TFRC

  Requires regular and timely feedback from receivers: order of once per RTT

  Example: Datagram Congestion Control Protocol (DCCP)
  Non-reliable transport protocol supporting congestion control

  Was meant to address congestion-unaware UDP applications
  No fixed congestion control scheme: uses pluggable modules instead

  CCID2: TCP-like, CCID3: TFRC

  Example: TFRC for RTP
  Needs RTT readings at both sender and receiver

  Sender calculates RTT and informs receiver
  Introduces non-backward-compatible extensions to RTP and RTCP

  Mechanisms based upon AVP Feedback profile (AVPF)
  Increased feedback rate (once per RTT)
  Use smaller RTCP packets (reduce the number of compound packets)

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

14

Application Layer Congestion Control
  End-to-end principle: transport layer has only partial knowledge

  Typical assumption: continuous data transfer (“big file”)

  Unrealistic for many applications
  Short message exchanges
  Transport does not know much data outstanding for transmission

  Application semantics may implicitly provide congestion control
  Lock-step protocols

  SIP transactions in a dialog, e.g., MESSAGE exchanges
  TFTP
  Original NFS

  Anything beyond simple lockstep requires careful thought
  So: Don’t try this at home: difficult to get it right…

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

15

What if we can modify the network?
But why bother (what are the remaining problems)?
  At low throughput, congestion signalling is wasteful

(all the dropped packets are non-productive)
  ECN: Explicit Congestion Notification

  At high throughput, the signalling rate is low ➔ slow convergence
  Start at a higher rate (initial window ≅ 4 KB, RFC 3390)
  Get more information about the path from the outset (“Quickstart”)

  A congestion loss cannot be distinguished from a corruption loss
  Corruption losses lead to lower throughput

  (problem only if the corruption losses are higher than the congestion loss equivalent to the
desirable throughput)

  Hard to fix unless ECN became universally deployed
  Would remove “emergency exit” packet drop from router’s choices

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

16

Quickstart
  Idea: Let routers indicate available capacity
  IP option used in TCP handshake indicates sender’s desired data rate

  Each router in the path can reduce rate request to available capacity
  Field is echoed back in SYN ACK at the transport layer (TCP option)
  Also: use special Nonce to detect cheating in the receiver’s report

  Backwards compatibility:
Find out if there are non-participating routers in the path
  Send with random TTL, also send a random “Quickstart TTL”
  Approving router decrements both IP TTL and “Quickstart TTL”
  Difference between (reduced) TTLs is echoed back
  Old routers change the difference ➔ Sender abandons Quickstart

  Sender combines allowed rate with measured RTT to initialize congestion
window
  Sends “Report approved rate” to allow on-path routers to reduce allocation
  Packets are then sent rate-paced (no ACK clocking available)

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

17

Guiding principles behind Quickstart
  Backwards compatibility, allowing gradual introduction

  Quickstart must only be enabled if all routers agree
  Pre-Quickstart routers cannot agree, so any old router on path disables Quickstart

  Special considerations for tunnels and initial packet losses/ECN indications

  No incentive to cheat
  Without the random nonces, a receiver could lie about

  The fact that a quickstart rate was approved
  The actual rate that has been approved

  Make sure lying does not provide an advantage

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

18

Some Issues with QuickStart
  Generally: adds complexity and introduces risks
  Hosts

  How do you know your transmission rate in advance (what to indicate in the QS request)?

  Routers
  How to allocate QuickStart shares fairly?
  How much state to maintain (and much allocation to verify)?
  How to clean up failed QS state?

  Routers may no see packets in the reverse direction (path asymmetry)
  Misconfiguration (or bugs) may lead to increased congestion

  Attacks
  Hosts can generate many quickstart requests and thus increase router load
  Hosts can request data rate and never utilize it (and may spoofed IP source address)

  Routers would require state to check

  Deployment
  Needs to be deployed all the way along the path (= all routers): incentive?
  Does this go through middleboxes?
  Security/stability implications

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

19

ECN: Explicit Congestion Notification
  Replace packet loss as a signal by a special bit in each packet

  “This packet would have been lost”
  Backwards compatibility:

  Sender must indicate ECN capability of transport (ECT)
  Non-ECT packets are dropped as previously usual

  No incentive to cheat
  Unmarked packets carry a bit that would be destroyed by marking

  “ECN Nonce”, RFC 3540
  Receivers echo back checksum (XOR value) of all these bits

  Lying receiver is detected by sender detecting mismatch in Nonce echo

  Two bits in IP packet, four values:
  00 = old (non-ECT)
  01, 10 = ECT (the two possible values carry one bit of ECN nonce)
  11 = marked by router as “would have been lost” (destroys nonce bit)

© 2009 Jörg Ott & Carsten Bormann 20

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

That was too easy…

  Multicasting
  Security
  Mobility

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

21

Congestion Control and Multicasting

S

R7 R8 R9 R2 R3

R4

R1

R R

R R

R

R R5

R

R6

p=0.01
D=2ms

p=0.01
D=10ms

p=0.01
D=20ms

p=0.03

p=0.03 p=0.05

p=0.08

p=0 p=0.1
p=0.002

p=0.001

p=0.004 p=0.01

p=0.02

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

22

Approaches to Multicast Congestion Control
  Rate-based congestion control based upon feedback

  E.g. using TFRC mechanism
  TCP-friendly Multicast Congestion Control (TFMCC) Building Block
  To be used e.g. with NORM, RTP, …
  Feedback loop from many receivers to sender

  Window-based mechanisms
  TCP-style approach
  Feedback loop from dedicated (possibly changing) receiver to sender

  Layered coding
  Receiver-based congestion control without feedback loop
  Receivers use IP multicast JOIN / LEAVE to control their reception rate

  Many of today‘s deployments don‘t use congestion control at all
  Often deployed in controlled environment using a simple rate control

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

23

TFMCC
  Principle operation borrows from TFRC

  Uses same formula, similar state variables, etc.

  But adjustments for multicast operation needed
  Control the amount and type of feedback received
  Distribute workload and amount of state to be maintained

  Receiver-based operation
  Receivers have unique identifiers
  Data rate calculations done at receivers X_r

  Receivers need to measure RTT to sender
  Send feedback with timestamps, echoed back by sender

  Packet loss rate calculations as before
  Feedback suppression scheme for all but worst receiver

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

24

TFMCC (2)
  Sender organizes feedback retrieval into rounds

  Indicates feedback round number
  Indicates Current Limiting Receiver (CLR)
  Sender selects receivers to respond in each round

  Receivers with measured RTT > MAX_RTT
  Receivers with calculated rate X_r < X_supp (suppression threshold)

  Includes reception timestamps for limited number of receivers
  Enable RTT measurements

  Sender uses feedback to update transmission rate
  Update CLR based upon feedback from last round

  Decreases in the transmission rate take effect immediately
  Also takes into account CLR crashes (e.g. no reports for > 10 RTTs)

  Cuts transmission rate in half if no report is received for 4 RTTs

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

25

PGMCC
  Uses TCP-style window-based congestion control

  Dynamically determines a receiver for the control loop
  Selected receiver: “ACKer”
  Aims to locate the receiver which would have the lowest throughput if there was

a TCP connection set up
  Sender calculates transmission rate for each receiver based upon feedback

  Using Padhye equation for TCP throughput

  Chooses ACKer based upon this information
  ACKer indicates if it is to leave the session

  Feedback from this ACKer control transmission rate
  Window-based scheme

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

26

Layered Coding
  Multiple “layers” transmit data at different rates

  Ordering / transmission rates need to be known up front

  Very simple receiver loop
  JOIN layer n
  Observe reception rate, packet loss
  If no packet loss: n=n+1
  If congestion observed: LEAVE layer n, n=n-1

  Past issue: LEAVE latency (IGMPv1 only)
  Idea: transmit at constantly reducing data rate on each layer

  Automatically makes reception rate drop to zero after some time
  Congestion-free receivers continue JOINing new layers

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

27

Congestion Control and Security
Why would someone want to subvert Fairness?
  Sender: deliver better service (at cost of other senders)
  Network: deliver better service (at cost of other networks)
  Receiver: receive better service (at cost of other receivers)
  Sender: cause damage
  Receiver: cause damage

  Unlikely for large players (detection is almost assured)
  Essentially rules out senders and network

  Receiver:
  “TCP optimization software” to receive better service
  (D)DoS sender by causing it to send to this receiver above fair share

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

28

Example: ACK attack
  Observation: TCP ACKs are not protected (no nonce etc.)
  Receiver could ACK everything (even if losses did occur)

  Sender will ramp up quickly (exponential slow start) until first full RTT is lost
  Not useful for receiving better service (there will be gaps)
  Useful for causing damage

  Why doesn’t this happen more often?
  Changing OS’s TCP is hard work
  There are easier angles of attack
  It’s relatively easy to subvert a large number of consumer PCs (➔botnets)
  It would be much harder to actually change all the various OS versions
  Phew…

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

29

Congestion Control and Mobility
  Path characteristics in the Internet change

  Filling and emptying queues lead to delay variation
  Queue length determine congestion-induced packet losses

  Usually changes occur somewhat gradually
  (relative to RTT)
  Exception: route changes (rather infrequently, often involve other collateral damage)

  Mobility may lead to more drastic changes
  Due to mobile IP route optimization

  From indirect path via home agent to shortest path between CN and MN
  Due to handover of a mobile node moving between different stub networks
  Due to a mobile node’s switching between different access technologies
  Simply due to wireless networks being involved

  Changes invisible to the transport
  Present architecture assumes that (mobile) IP and transport layer don’t talk
  Healthy: last hop may not be involved in mobility protocol

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

30

Mobility-induced Changing Path Properties (1)

Blue
Provider

Red
Provider

Home

Handoff Handoff Handoff
Handoff + Roaming

Correspondent
node

Newly introduced
Bottleneck link

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

31

Mobility-induced Changing Path Properties (2)

Blue
Provider

Red
Provider

Home
Correspondent

node

Newly introduced
Bottleneck link

GPRS WLAN UMTS

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

32

Multi-attachment problem

Blue
Provider

Red
Provider

Home
Correspondent

node

Simultaneous attachment

GPRS WLAN WLAN

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

33

Limitations to Congestion Control
  Elastic applications

  Typical reference: bulk data transfer
  Not time critical + always data to send

  Inelastic applications
  Real-time media streams
  Limited number of operational points
  Reducing rate below minimum may equate loss of service

  Example: File download and phone call share DSL access link

  So what does “fairness” really mean here?
  Flow vs. application vs. user vs. …

© 2009 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

34

Concluding Thoughts
  Congestion control is required

  May serve the community (and you will get flak if you don’t)
  May improve performance of your own application

  Congestion scale may be limited by the application
  Choice of (a few) discrete rates only
  But: minimal QoS cannot be enforced by the application alone

  Fairness at large
  Different notions and granularities
  Fairness over time?
  Charging for congestion?

