
HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

© 2009 Jörg Ott & Carsten Bormann 1

Scalability

Protocol Design – S-38.3157

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

© 2009 Jörg Ott & Carsten Bormann 2

A typical design argument:

 “This does not scale…”

  Why?
  With respect to what?
  Does it have to?

© 2009 Jörg Ott & Carsten Bormann 3

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Scalability in General
Common use (not just) in communications
  Capability of a system to operate across a range of settings

  As opposed to being constrained to a single operational point

  Measuring change / evolution of a system property
  Depending on a (set of) certain input parameter(s)

  Applicability defined by the range of acceptable input parameters
(for the which the resulting system properties are workable)

  Closely coupled to resource consumption (and thus fairness)

  Relation to complexity theory
  Classification of resource consumption of algorithms depending on the input

Complexity classes (order of): O(1), O(n), O(log n), O(nk), O(en)

© 2009 Jörg Ott & Carsten Bormann 4

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Scale as a Measure (1)
  Example:

O(n), O(log n), O(n2), O(en)

Operational range
“Cost”

© 2009 Jörg Ott & Carsten Bormann 5

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Scale as a Measure (2)
  Example:

O(n), O(log n), O(n2), O(en)

“Cost”

© 2009 Jörg Ott & Carsten Bormann 6

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Areas of Scalability: Network Side
  Path length (number of hops, delay, delay variation)

  Distance-dependent delay due to speed of light + processing/queuing delay per hop
  Local link or same host vs. some 30 hops to Australia
  < 1ms on a local link vs. several seconds via GPRS or satellite

  vs. minutes or hours or days when talking to a spacecraft (or other remote peers)
  Close to constant delay on a local link vs. several seconds jitter via satellite

  Incurred by medium access protocol or in router queues due to other traffic

  Loss rate
  Virtually no loss on a local wired link vs. <10% loss (typically 1-3%) for Internet traffic
  Unpredictable loss rate and pattern for wireless networks
  Individual losses (following some distribution) vs. bursty losses

  Data rate
  Some 100 bit/s acoustic underwater modem vs. Tbit/s fiber optic link

  Degree of multiplexing
  How much influence does the own traffic have on the network?
  Access link vs. backbone link

© 2009 Jörg Ott & Carsten Bormann 7

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Areas of Scalability: Network Side (2)
  Particular issue: long fat pipes (“bandwidth x delay” product)

  Enabling efficient and quick full utilization without knowing pipe characteristics
and third party traffic

  No problem in traditional wired networks
  Example: ISDN link @ 64 kbit/s x 10ms delay = ~800 Bytes

Delay

Data rate
(“bandwidth”)

Volume = potential data in flight

Only one packet in transit: first bits of packet are received before last bits have been sent

e.g., 1500 bytes

© 2009 Jörg Ott & Carsten Bormann 8

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Areas of Scalability: Network Side (3)
  Long fat pipes (High “bandwidth x delay” product)

  Many packets can be “in flight”

Delay

D
at

a
ra

te

(“
ba

nd
w

id
th

”)

Examples: DVB-S2 geostationary satellite @ 90 Mbit/s x 250ms delay = ~2.8 MB
 Fiber optic transatlantic link @ 10 Gbit/s x 25ms delay = ~31 MB

Volume = potential data in flight

© 2009 Jörg Ott & Carsten Bormann 9

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Areas of Scalability: Application Side
  Update or request rate

  Measured in operations per second vs. per hour vs. per day vs. per year
  Convergence time vs. period between two updates
  Part of this: chattiness of the application protocol

  Item size
  Data fitting into a single MTU or not
  File size from some 10 bytes to 10 GB (and beyond)

  Impact of per operation overhead

  Number of entities (users, networks, systems)
  How many are active (sending operations)
  How many must agree on common state as a result of the protocol operation
  Dynamics: How does this number vary?

  Number spaces
  In the protocol (see above) and in the operating system
  Example: C10K problem: handling 10,000(s) clients with a server

  Requires enough port numbers for demuxing, local identifiers (e.g., file descriptors), …

© 2009 Jörg Ott & Carsten Bormann 10

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Scalability Dynamics
  Network characteristics may vary heavily and frequently

  Depending on a protocol entity’s own activity
  Depending on traffic generated by others
  Depending on network routing changes (e.g., in response to failure)

  Application characteristics may vary
  Size of data items (e.g., file size)
  Number of involved systems interacting with one another

(for group communications)
  Number of involved systems operating in parallel

(parallel clients for a server)

  Variations are usually not predictable
  Example: Flash crowds

© 2009 Jörg Ott & Carsten Bormann 11

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Meta Aspect: Complexity
  Protocol Complexity

  MUST/SHOULD/MAY in the protocol spec, number of options
  “Hard + easy = harder than hard”

  State machine complexity
  E.g., number of state and state transitions, synchronization requirements
  # transitions (and interactions) to achieve a result, interdependence of entities

  Operation complexity
  E.g., parsing protocol messages

  Computational complexity
  E.g., crypto, routing, and lookup algorithms

  Issue of backwards compatibility
  Deployment considerations usually require dealing with older versions
  Limits the freedom to introduce new functionality and better mechanisms
  May lead to additional complexity if special treatment of “legacy nodes” is needed
 Evolvability

© 2009 Jörg Ott & Carsten Bormann 12

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Example: IGMPv2 (1)

 | |
 | |
 | |
 | |
 --------->| Non-Member |<---------
 | | | |
 | | | |
 | | | |
 | |________________| |
 | | |
 | leave group | join group | leave group
 | (stop timer, |(send report, | (send leave
 | send leave if | set flag, | if flag set)
 | flag set) | start timer) |
 ________|________ | ________|________
 | |<--------- | |
 | | | |
 | |<-------------------| |
 | | query received | |
 | Delaying Member | (start timer) | Idle Member |
 ---->| |------------------->| |
		report received	
		(stop timer,	
		clear flag)	
	_________________	------------------->	_________________
query received	timer expired		
(reset timer if	(send report,		
Max Resp Time	set flag)		
< current timer)			

Plain IGMPv2 state diagram
for hosts (almost complete)

© 2009 Jörg Ott & Carsten Bormann 13

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Example: IGMPv2 (2)

 ----------------------------| |<-----------------------
		timer expired				
timer expired		(notify routing -,				
(notify routing -)	No Members	clear rxmt tmr)				
------->	Present	<-------				
v1 report rec'd				------------		
(notify routing +,		________________			rexmt timer	
start timer,				expired		
start v1 host	v2 report received			(send g-s		
timer)	(notify routing +,			query,		
	start timer)			st rxmt		
__________	______	_____	_	______ tmr)		
		<------------				
				<-----		
		v2 report received				
		(start timer)				
	Members Present	<-------------------	Checking			
----->		leave received	Membership			
			(start timer*,			
			start rexmt timer,			
			send g-s query)			
	--->		------------------->			
			_________________		______________	
		v2 report rec'd				
		(start timer)		v1 report rec'd	v1 report rec'd	
	----------------	(start timer,	(start timer,			
	v1 host	start v1 host timer)	start v1 host			
	tmr ______________V__	timer)				
	exp'd		<----------------------			

	Version 1	timer expired				
	Members Present	(notify routing -)				
 ------->| |---
 | |<--------------------
 ------->|_________________| v1 report rec'd |
| v2 report rec'd | | (start timer, |
| (start timer) | | start v1 host timer) |
 ----------------- --------------------------

IGMPv2 state diagram
considering backward
compatibility with
IGMPv1 nodes

Note:
Functionality (“fast leave”)
gets lost with presence of
just one v1 host

© 2009 Jörg Ott & Carsten Bormann 14

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Meta Aspect: Complexity (2)
  Implementation complexity

  CPU requirements (related to operation and computational complexity)
  Memory requirements (code, data – related to state machine complexity)
  Disk space requirements
  Energy requirements and heat generation
  Other resources…

  Platform scale
  Battery operated lightswitch
  Tiny embedded systems (TCP stack in 4 KB)
  Price-sensitive consumer widget/TV/car
  Phone or PDA
  Powerful desktop or laptop PC
  High-end multi-CPU machines, server farm

© 2009 Jörg Ott & Carsten Bormann 15

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Implementation Scalability
  C10K Problem: Examples

  Frequency of interactions
  Particularly expensive operations such as accepting and closing connections, security, …

  Multiplexing and I/O handling
  Processes vs. threads vs. single-threaded handling
  Issues with system call efficiency (e.g., poll (), select ())

-  Solutions: kqueue (BSD) / epoll (Linux)

  Processing many events simply takes time
  Data access

  Seek operations on a hard drive when retrieving file blocks for many clients
-  Hard drives are “fast” unless multiplexed
-  Example: video-on-demand streaming

  System bus bandwidth
  I/O subsystem performance

-  Example: file transfer from/to a Windows machine (using cygwin)
-  Limited to 2–3 MB/s on 1.7 GHz laptop running MS Windows XP

  Interaction with other processes on the same machine

© 2009 Jörg Ott & Carsten Bormann 16

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Implementation Scalability (2)
  Load balancing

  Use of server farms for load sharing
  Load distribution e.g. by means of DNS, proxies
  Possibly decentralized to improve access locality

  And thus also avoid the impact of long paths

  Issue: need for synchronizing servers in a farm?

© 2009 Jörg Ott & Carsten Bormann 17

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Operational Complexity
  Networks and systems need to be run

  How many parameters need to be configured?
  How do they interact?
  How much coordination (e.g., across different organizations) is needed?
  (How) can misconfigurations be detected?
  Manual vs. automated process

  Monitoring, diagnostics
  Which parameters? Where? Frequency? …?

  Failures
  Graceful degradation vs. complete breakdown
  How to track and debug failures?
  How much action is needed for recovery?
  How long does this take?

© 2009 Jörg Ott & Carsten Bormann 18

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Meta Aspect: Economics
  Cost may be associated with data transmission

  Rate, volume, packets, QoS, …

  Cost is directly associated with implementation complexity
  Manpower for system design, implementation, and testing
  Device requirements

  Benefit is indirectly associated with protocol complexity
  Successful deployments require working and interoperable products
  Metcalfe’s law
  Complexity creates adoption hurdles

  Financial scaling

  (cf. Social scaling)

© 2009 Jörg Ott & Carsten Bormann 19

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Limiting Scalability
  Scalability is usually another design tradeoff, per parameter

  Scalability vs. protocol and implementation complexity, resource utilization, …
  Quick results vs. longer term perspectives

  Limiting applicability may be dangerous
  Protocols may often be used outside their intended areas of application
  Exceptions: e.g., intra-system communications in contained environments

  Dealing with scaling beyond expectation
  Graceful degradation (of quality or functionality)
  Clean failure
  Make sure the protocol does not run havoc / create damage

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

© 2009 Jörg Ott & Carsten Bormann 20

Scalability Mechanisms by Example

© 2009 Jörg Ott & Carsten Bormann 21

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Mechanisms: Timeouts
  Path length

  Primary impact on delay and delay variation
  Packet loss and degree of multiplexing covered below

  Issue: Protocols require timers and timeouts
  Any statically selected value is likely to wrong in some environment

  Limiting factor for efficiency: too large ones may keep the network idle
  Cause of unnecessary overhead: too small ones may lead to early retransmissions

  Example: NFS used 500 ms

  Solution: Adaptive timers
  Measure observed RTT and adjust timers accordingly
  Use moving averages to avoid oscillation to short-term changes
  Take a sufficiently conservative initial values that will not cause harm

© 2009 Jörg Ott & Carsten Bormann 22

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Example: TCP RTO Calculation
  TCP Retransmission Timeout (RTO)

  Used to determine that a packet got lost and needs retransmission
  Typically an indication of network congestion

  Important implication: return to slow start operation
  Underestimating worse than overestimating

  Premature RTO will harm performance seriously (spurious retransmits, slow start!)
  Late RTO will delay repair and hence also harm performance

  Algorithm
  RTTVAR (RTT variation) and SRTT (smoothed RTT); G: clock granularity

  Initial RTO = 3s
  Upon first RTT measurement (R)

  SRTT = R RTTVAR = R/2
  RTO = SRTT + max (G, K x RTTVAR) [K=4]

  For each subsequent RTT measurement (R’)
  RTTVAR = (1 – β) x RTTVAR + β x | SRTT – R’ | [β = 1/4]
  SRTT = (1 – α) x SRTT + α x R’ [α = 1/8]
  RTO = SRTT + max (G, K x RTTVAR) [K=4]

© 2009 Jörg Ott & Carsten Bormann 23

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

TCP RTO Example

© 2009 Jörg Ott & Carsten Bormann 24

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Packet loss rate
  Loss rate

  Example: Go-Back-N vs. SACK
  Partially dependent on the degree of multiplexing

  Issue: distinguishing congestion losses and corruption losses
  E.g., observing RTO as one hint for congestion likelihood

  General: congestion control
  Reduction of data rate
  Reduction of packet frequency

  Losses due to bit errors
  Forward error correction (bit or packet-based)
  Adaptive retransmission schemes

© 2009 Jörg Ott & Carsten Bormann 25

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Mechanisms: Congestion Control
  Data rate

  Obviously bounded by the slowest link in the path (upper bound)
  Dependent on the current network load (and thus variable)
  Other factors: delay and packet losses

  Issue: fair resource sharing vs. maximizing resource utilization
  Protocol entities operate in unknown and changing environments
  Again, no initial value for a data rate can be assumed

  Pessimistic assumptions (low rate) may result in underutilization
  Optimistic assumptions (high rate) may result in overload and lead to congestion

  Solution: dynamic adaptation of data rate
  Many different options for rate adaptation

  Not too conservative (to avoid wasting resources)
  Not too aggressive (to avoid congestion)

© 2009 Jörg Ott & Carsten Bormann 26

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Example: Simplified TCP Operation

Link
Capacity

Throughput

Time

Slow Start Slow Start Cong. Avoid. Congestion Avoidance

Timeout

© 2009 Jörg Ott & Carsten Bormann 27

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Dealing with Long Fat Pipes
  Networks with large delay x bandwidth product

  Sufficient bandwidth available
  Yet limited communication performance

  Issue: peers cannot utilize available capacity
  Limitations due to protocol parameters

  Example: TCP Window size limited the amount of data in flight to 64 KB
  Limitations due to protocol interactions

  Examples: Lock-step operation of SMTP initial handshake, of HTTP when downloading
web pages, of POP3 when downloading emails, of SMB when accessing files

  Some solutions
  Sufficiently dimensioned parameters (expect the unexpected)

  TCP: Window scaling option to multiply advertised window size by 2x

  Minimize the number of end-to-end interactions
  SMTP, HTTP: pipelining of requests to avoid RTT penalty

© 2009 Jörg Ott & Carsten Bormann 28

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Real-world Examples: X11 and SMB in LFNs
  X11 Protocol

  Designed for LANs
  Frequent request-response interaction between client and server

  Often lock step operation required: operation n+1 depends on result of operation n

  Many small successive operations cause poor performance
  Link capacity is not the bottleneck

  Server Message Block (SMB)
  Resource (e.g., file and printer) access in LANs
  RPC-style abstraction leads to horrible implementations

  Synchronous function calls, apparently assumed to complete in virtually no time
  Repeated invocation of the same methods

  Extremely poor performance over long delay links (e.g., satellites)
  Example: complete file transfer (~15 MB) takes 2.5s in LAN @ RTT=1ms

 but requires ~6 minutes @ RTT=1s

  General solution: Performance Enhancing Proxies (PEPs) for applications

© 2009 Jörg Ott & Carsten Bormann 29

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Lock-step Protocols hit an RTT Ceiling
Th

ro
ug

hp
ut

Data
rate

1 ADU
per RTT

Scalable

© 2009 Jörg Ott & Carsten Bormann 30

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Thursday Summary
  Scalability: constant, logarithmic, linear,

polynomial, exponential relationships
  Relative to multiple parameters: (sizes,

rates, numbers, …)
  “Protocol designer’s toolkit”

  Adaptiveness (measure and react)
  Decentralization, caching, …

  Scalability also is about economics
  Throw more hardware vs. better design

© 2009 Jörg Ott & Carsten Bormann 31

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Impact of Data Rate
  Complexity of protocol and algorithmic operations may be limited

by data rate
  Different scaling of data rate and processing power
  Processing is one potential bottleneck
  Applies particularly to routers (but may also affect endpoints)

  Examples
  Plain packet forwarding vs. policy-based routing

  The former works across all wire speeds (“fast path processing”)
  The latter is limited to “slower” links (no per packet route calculation possible)

  Tradeoff across different crypto algorithms
  Public key cryptography operations expensive to compute: limited to small amounts of

data and occasional use
  Symmetric crypto algorithms suitable for higher data rates

© 2009 Jörg Ott & Carsten Bormann 32

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Scaling to large Numbers (1)
  …of items, users, systems
  Decentralized operation

  Also helps with load sharing for implementations

  Passive: Caching
  Web caches, DNS

  Active: Content replication
  Streaming servers for media on demand content
  Web servers for news agencies

  Tradeoff: keeping content current (and synchronized)
  How well can applications deal with (slightly) out-of-date data?
  Update frequency from server side only (web and streaming servers)
  May incur significant complexity with update operations from client

(e.g., distributed databases)

© 2009 Jörg Ott & Carsten Bormann 33

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Example: DNS
  Key features

  Distributed model: cooperation between servers
  Redundant servers: avoid single point of failure in zone

  one primary and one or more secondary servers

  Hierarchical structure of domain names
  For decentralized administration and operation
  Straightforward delegation of responsibility

  General purpose: not restricted to IP addresses
  Could map anything
  Stores additional information about domains

  Scalability mechanisms
  Bottom-up search: exploit locality of requests
  Efficiency through caching
  Active replication of partial information (DNS servers for domains vs. contents)

© 2009 Jörg Ott & Carsten Bormann 34

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Example: DNS (2)
  Decentralization, delegation, locality

  Dynamic Delegation Discovery System (DDDS)

netlab.tkk.fi dmn.tzi.org

tkk.fi tzi.org

Root servers
…

.fi .org

© 2009 Jörg Ott & Carsten Bormann 35

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Limits to Caching
  Diversity of item access must be limited relative to cache size

  Working set must fit
  Locality helps

  Sufficient number of requests relative to lifetime of cached items

  Example: Route caching
  Works for AS router with small number of entries in forwarding information base
  Does not work for backbone router with large FIB

© 2009 Jörg Ott & Carsten Bormann 36

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Example: DHTs (1)
  Information storage no longer relies on dedicated servers

  Removes the load on a small number of entities
  Distributes it across (more or less) equal peers
  Often used as a synonym for scalability

  Simplified Operation
  Peers are organized according to some topology (ring, space, cube, …)

  Nodes know their neighbors and probably other nodes
  (Information about) resources are stored on one or more of these peers
  An index for each resource (=the hash) points (in)directly to their location(s)
  This hash table is maintained distributed across all nodes
  If a request is made to a node

  The request “string” is hashed (algorithmically) and yields a node storing the resource
  The request is forwarded along the topology (following known links) to the target node
  The request is answered directly by this node

© 2009 Jörg Ott & Carsten Bormann 37

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Example: DHTs (2)
  Some thoughts on the scalability of DHTs

  First of all: many variants exist for good reasons: design tradeoffs

  Topology maintenance
  Maintaining an overlay requires effort as nodes join and leave

  Adjusting pointers to topological neighbors (and more remote nodes)
  Moving/replicating resources stored on a leaving node to others
  Populating a newly arriving node
  Essentially: balancing the topology and ensuring that the hashing works

  Unlike servers, clients may get disconnected, turned off, are unreliable, etc.
  Introduction of “super-peers” (which are well connected and appear more reliable)
  Possibly a dynamic process

  Lookup/update overhead
  Information resources get stored, modified, and retrieved
  Extreme 1: Make the lookup efficient and the update expensive
  Extreme 2: Make the lookup expensive but the update cheap
  Usually something in-between, possibly augmented by some caching

© 2009 Jörg Ott & Carsten Bormann 38

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Scaling to Large Numbers (2): Deferring Operations

  Late binding
  Resolve bindings (e.g. name to address mapping) as late as possible
  Allows operation with partial knowledge – no global synchronization needed
  Example: IP telephony

  SIP User Agents may defer address resolution to their local server
-  Saves complexity in the endpoint
-  Saves communication overhead (as the server may perform efficient caching)

  User location is only performed at the called user’s server

  Counter-example: DNS
  IP address needed for any communication
  Name to address resolution carried out by the endpoint

-  Requires globally connected naming infrastructure
-  Exception (counter-counter-example): HTTP proxies resolve names for their clients

  Lazy Evaluation
  Do not calculate a result before it is known to be really needed

© 2009 Jörg Ott & Carsten Bormann 39

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Scaling to Large Numbers (3): Hierarchies
  “Divide and conquer”

  Subdivide the large problem into more manageable pieces

  Example: Directory services
  E.g., DNS hierarchy

  Example: Routing protocols
  Autonomous systems
  Distinction between Inter-domain and intra-domain routing

  Only network prefixes are known outside a domain, internal structure is “hidden”
  Network prefixes may be further aggregated

  CIDR: Classless inter-domain routing
  Aggregation of class C addresses

  IP forwarding operation
  Across networks based upon IP addresses
  Within networks based upon link layer addresses

© 2009 Jörg Ott & Carsten Bormann 40

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Example: Routing Information Protocol (RIP)
  Protocol-inherent problems for Distance Vector routing

  Limit the applicability to larger networks

  Datagram-based route reporting
  # items to report vs. MTU size
  Incremental reporting: all routes need to be sent once every 30s

  Impact on convergence: impossible to tell the absence of an entry

  Bandwidth requirements for updating

  Instability during routing changes
  Convergence to a new consistent view of the network takes a while
  Temporary path unavailability or loops observable from the endpoints

  Counting to infinity
  Need to define infinity so that converging does not take too long
  Choice: 16!
  Hard limit on network diameter

© 2009 Jörg Ott & Carsten Bormann 41

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Scaling to Large Numbers (4): Degradation
  Accuracy requirements may change depending on the number of

involved entities
  Phone conversation vs. small group discussion vs. lecture vs. concert
  But: distributed database transactions

  Possible tradeoffs
  Completeness: not all information (state) may need to be known

  Select representatives
  Allow for incomplete views

  Timeliness: state changes may not need to be communicated immediately
  Allow temporary inaccuracies

  Functionality: not all operations make sense for all group sizes
  Example: Repairing packet losses in a TV broadcast with 1 M receivers

 vs. repairing packet losses in a three party conference

  “Loose coupling”

© 2009 Jörg Ott & Carsten Bormann 42

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Example: RTCP
  Provides group membership and reception quality information for RTP sessions

  Must scale with the number of group members
  Must not take up too much network capacity (rate-limited!)

  Overall “RTP session bandwidth”

  Default: 5% of the session bandwidth for RTCP
  Takes role (sender or receiver) into account
  Up to 25% of session members are senders: 3.75% for receivers, 1.25% for senders
  More than 25% of session members are senders: share data rate proportionally

  Scalable RTCP transmission interval
  Based upon the group size, RTCP data rate, average RTCP packet size
  Independently observed by all receivers → calculate their own rate

  Randomization to avoid synchronization over time
  Timer reconsideration in case many nodes enter or leave in parallel

  Default minimum: 5s (2.5 seconds for initial packet)

© 2009 Jörg Ott & Carsten Bormann 43

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Delegation and Roles
  Distinct roles with different responsibilities for protocol entities

  Motivated by system/network design, efficient protocol operation, robustness
  Explicitly assigned (by configuration) vs. self-organizing (inside the protocol)

  Supports division of tasks and helps limiting complexity

  Examples
  OSPF: Designated Router and Backup Designated Router for broadcast nets

  Only one router is responsible for forwarding packets
  Similar concepts for multicasting

  IGMP: Designated Querier for IGMP membership polling
  Peer-to-Peer systems: supernodes vs. regular nodes
  Reliable Multicasting: Repair heads, DLRs, Repetitors for local repair (packet

retransmission) in subgroups or subtrees
  Multicast Congestion Control: Current Limiting Receiver (CLR) or Selected

ACKer to determine acceptable transmission rate

© 2009 Jörg Ott & Carsten Bormann 44

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Scaling to Small and Large Numbers (5)
  Careful choice of field sizes and constants required

  Avoid fixing if possible
  If necessary, use foresight (tradeoff: overhead vs. longevity)
  Attention: variable length fields increase processing complexity

  Examples for limiting field sizes and structure
  32 bit IPv4 address and its initial (wasteful) address classes
  IPv4 option space
  TCP window size (see above)
  TCP header extension space
  Port number size (16 bits) and the range allocation (only 16 K dynamic ports)

  Examples for constants
  16 = infinity in RIP
  Initial RTCP timer, minimal RTCP interval

© 2009 Jörg Ott & Carsten Bormann 45

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Concluding Remarks
  Scalability means adaptivity

  “Optimization” problem for multiple input and output parameters
  Adaptation works only in the order of RTT
  Beware of oscillation
  Tradeoff in various dimensions
  But: Don’t let your protocol get too complex

  Must be implemented after all

  Scale as you need!
  But be aware of your requirements

  When you don’t know what to expect: be conservative

  Remember: your protocol might be successful!

