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A typical design argument: 

       “This does not scale…” 

  Why? 
  With respect to what? 
  Does it have to? 
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Scalability in General 
Common use (not just) in communications 
  Capability of a system to operate across a range of settings 

  As opposed to being constrained to a single operational point 

  Measuring change / evolution of a system property 
  Depending on a (set of) certain input parameter(s) 

  Applicability defined by the range of acceptable input parameters 
(for the which the resulting system properties are workable) 

  Closely coupled to resource consumption (and thus fairness) 

  Relation to complexity theory 
  Classification of resource consumption of algorithms depending on the input 

Complexity classes (order of): O(1), O(n), O(log n), O(nk), O(en) 
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Scale as a Measure (1) 
  Example: 

O(n), O(log n), O(n2), O(en) 

Operational range 
“Cost” 
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Scale as a Measure (2) 
  Example: 

O(n), O(log n), O(n2), O(en) 

“Cost” 
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Areas of Scalability: Network Side 
  Path length (number of hops, delay, delay variation) 

  Distance-dependent delay due to speed of light + processing/queuing delay per hop 
  Local link or same host vs. some 30 hops to Australia 
  < 1ms on a local link vs. several seconds via GPRS or satellite 

  vs. minutes or hours or days when talking to a spacecraft (or other remote peers) 
  Close to constant delay on a local link vs. several seconds jitter via satellite 

  Incurred by medium access protocol or in router queues due to other traffic  

  Loss rate 
  Virtually no loss on a local wired link vs. <10% loss (typically 1-3%) for Internet traffic 
  Unpredictable loss rate and pattern for wireless networks 
  Individual losses (following some distribution) vs. bursty losses 

  Data rate 
  Some 100 bit/s acoustic underwater modem vs. Tbit/s fiber optic link 

  Degree of multiplexing 
  How much influence does the own traffic have on the network? 
  Access link vs. backbone link 
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Areas of Scalability: Network Side (2) 
  Particular issue: long fat pipes (“bandwidth x delay” product) 

  Enabling efficient and quick full utilization without knowing pipe characteristics 
and third party traffic 

  No problem in traditional wired networks 
  Example:    ISDN link @ 64 kbit/s x 10ms delay = ~800 Bytes 

Delay 

Data rate 
(“bandwidth”) 

Volume = potential data in flight 

Only one packet in transit: first bits of packet are received before last bits have been sent 

e.g., 1500 bytes 
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Areas of Scalability: Network Side (3) 
  Long fat pipes (High “bandwidth x delay” product) 

  Many packets can be “in flight” 

Delay 
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Examples: DVB-S2 geostationary satellite @ 90 Mbit/s x 250ms delay = ~2.8 MB 
     Fiber optic transatlantic link @ 10 Gbit/s x 25ms delay = ~31 MB  

Volume = potential data in flight 
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Areas of Scalability: Application Side 
  Update or request rate 

  Measured in operations per second vs. per hour vs. per day vs. per year 
  Convergence time vs. period between two updates 
  Part of this: chattiness of the application protocol  

  Item size 
  Data fitting into a single MTU or not 
  File size from some 10 bytes to 10 GB (and beyond) 

  Impact of per operation overhead 

  Number of entities (users, networks, systems) 
  How many are active (sending operations) 
  How many must agree on common state as a result of the protocol operation 
  Dynamics: How does this number vary? 

  Number spaces 
  In the protocol (see above) and in the operating system 
  Example: C10K problem: handling 10,000(s) clients with a server 

  Requires enough port numbers for demuxing, local identifiers (e.g., file descriptors), … 
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Scalability Dynamics 
  Network characteristics may vary heavily and frequently 

  Depending on a protocol entity’s own activity 
  Depending on traffic generated by others 
  Depending on network routing changes (e.g., in response to failure) 

  Application characteristics may vary 
  Size of data items (e.g., file size) 
  Number of involved systems interacting with one another 

(for group communications) 
  Number of involved systems operating in parallel 

(parallel clients for a server) 

  Variations are usually not predictable 
  Example: Flash crowds 
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Meta Aspect: Complexity 
  Protocol Complexity 

  MUST/SHOULD/MAY in the protocol spec, number of options 
  “Hard + easy = harder than hard” 

  State machine complexity 
  E.g., number of state and state transitions, synchronization requirements 
  # transitions (and interactions) to achieve a result, interdependence of entities 

  Operation complexity 
  E.g., parsing protocol messages 

  Computational complexity 
  E.g., crypto, routing, and lookup algorithms 

  Issue of backwards compatibility 
  Deployment considerations usually require dealing with older versions 
  Limits the freedom to introduce new functionality and better mechanisms 
  May lead to additional complexity if special treatment of “legacy nodes” is needed 
 Evolvability 
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Example: IGMPv2 (1) 
                              ________________ 
                             |                | 
                             |                | 
                             |                | 
                             |                | 
                   --------->|   Non-Member   |<--------- 
                  |          |                |          | 
                  |          |                |          | 
                  |          |                |          | 
                  |          |________________|          | 
                  |                   |                  | 
                  | leave group       | join group       | leave group 
                  | (stop timer,      |(send report,     | (send leave 
                  |  send leave if    | set flag,        |  if flag set) 
                  |  flag set)        | start timer)     | 
          ________|________           |          ________|________ 
         |                 |<---------          |                 | 
         |                 |                    |                 | 
         |                 |<-------------------|                 | 
         |                 |   query received   |                 | 
         | Delaying Member |    (start timer)   |   Idle Member   | 
    ---->|                 |------------------->|                 | 
   |     |                 |   report received  |                 | 
   |     |                 |    (stop timer,    |                 | 
   |     |                 |     clear flag)    |                 | 
   |     |_________________|------------------->|_________________| 
   | query received    |        timer expired 
   | (reset timer if   |        (send report, 
   |  Max Resp Time    |         set flag) 
   |  < current timer) | 
    ------------------- 

Plain IGMPv2 state diagram 
for hosts (almost complete) 
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Example: IGMPv2 (2) 
                              ________________ 
 ----------------------------|                |<----------------------- 
|                            |                |timer expired           | 
|               timer expired|                |(notify routing -,      | 
|          (notify routing -)|   No Members   |clear rxmt tmr)         | 
|                    ------->|    Present     |<-------                | 
|                   |        |                |       |                | 
|v1 report rec'd    |        |                |       |  ------------  | 
|(notify routing +, |        |________________|       | | rexmt timer| | 
| start timer,      |                    |            | |  expired   | | 
| start v1 host     |  v2 report received|            | | (send g-s  | | 
|  timer)           |  (notify routing +,|            | |  query,    | | 
|                   |        start timer)|            | |  st rxmt   | | 
|         __________|______              |       _____|_|______  tmr)| | 
|        |                 |<------------       |              |     | | 
|        |                 |                    |              |<----- | 
|        |                 | v2 report received |              |       | 
|        |                 | (start timer)      |              |       | 
|        | Members Present |<-------------------|    Checking  |       | 
|  ----->|                 | leave received     |   Membership |       | 
| |      |                 | (start timer*,     |              |       | 
| |      |                 |  start rexmt timer,|              |       | 
| |      |                 |  send g-s query)   |              |       | 
| |  --->|                 |------------------->|              |       | 
| | |    |_________________|                    |______________|       | 
| | |v2 report rec'd |  |                          |                   | 
| | |(start timer)   |  |v1 report rec'd           |v1 report rec'd    | 
| |  ----------------   |(start timer,             |(start timer,      | 
| |v1 host              | start v1 host timer)     | start v1 host     | 
| |tmr    ______________V__                        | timer)            | 
| |exp'd |                 |<----------------------                    | 
|  ------|                 |                                           | 
|        |    Version 1    |timer expired                              | 
|        | Members Present |(notify routing -)                         | 
 ------->|                 |------------------------------------------- 
         |                 |<-------------------- 
 ------->|_________________| v1 report rec'd     | 
| v2 report rec'd |   |   (start timer,          | 
| (start timer)   |   |    start v1 host timer)  | 
 -----------------     -------------------------- 

IGMPv2 state diagram 
considering backward 
compatibility with 
IGMPv1 nodes 

Note: 
Functionality (“fast leave”) 
gets lost with presence of 
just one v1 host 
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Meta Aspect: Complexity (2) 
  Implementation complexity 

  CPU requirements (related to operation and computational complexity) 
  Memory requirements (code, data – related to state machine complexity) 
  Disk space requirements 
  Energy requirements and heat generation 
  Other resources… 

  Platform scale 
  Battery operated lightswitch 
  Tiny embedded systems (TCP stack in 4 KB) 
  Price-sensitive consumer widget/TV/car 
  Phone or PDA 
  Powerful desktop or laptop PC 
  High-end multi-CPU machines, server farm 
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Implementation Scalability 
  C10K Problem: Examples 

  Frequency of interactions 
  Particularly expensive operations such as accepting and closing connections, security, … 

  Multiplexing and I/O handling 
  Processes vs. threads vs. single-threaded handling 
  Issues with system call efficiency (e.g., poll (), select ()) 

-  Solutions: kqueue (BSD) / epoll (Linux) 

  Processing many events simply takes time 
  Data access 

  Seek operations on a hard drive when retrieving file blocks for many clients 
-  Hard drives are “fast” unless multiplexed 
-  Example: video-on-demand streaming 

  System bus bandwidth 
  I/O subsystem performance 

-  Example: file transfer from/to a Windows machine (using cygwin) 
-  Limited to 2–3 MB/s on 1.7 GHz laptop running MS Windows XP 

  Interaction with other processes on the same machine 
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Implementation Scalability (2) 
  Load balancing 

  Use of server farms for load sharing 
  Load distribution e.g. by means of DNS, proxies 
  Possibly decentralized to improve access locality 

  And thus also avoid the impact of long paths 

  Issue: need for synchronizing servers in a farm? 
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Operational Complexity 
  Networks and systems need to be run 

  How many parameters need to be configured? 
  How do they interact? 
  How much coordination (e.g., across different organizations) is needed? 
  (How) can misconfigurations be detected? 
  Manual vs. automated process 

  Monitoring, diagnostics 
  Which parameters?  Where?  Frequency?   …? 

  Failures 
  Graceful degradation vs. complete breakdown 
  How to track and debug failures? 
  How much action is needed for recovery? 
  How long does this take? 
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Meta Aspect: Economics 
  Cost may be associated with data transmission 

  Rate, volume, packets, QoS, … 

  Cost is directly associated with implementation complexity 
  Manpower for system design, implementation, and testing 
  Device requirements 

  Benefit is indirectly associated with protocol complexity 
  Successful deployments require working and interoperable products 
  Metcalfe’s law 
  Complexity creates adoption hurdles 

  Financial scaling 

  (cf. Social scaling) 
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Limiting Scalability 
  Scalability is usually another design tradeoff, per parameter 

  Scalability vs. protocol and implementation complexity, resource utilization, … 
  Quick results vs. longer term perspectives 

  Limiting applicability may be dangerous 
  Protocols may often be used outside their intended areas of application 
  Exceptions: e.g., intra-system communications in contained environments 

  Dealing with scaling beyond expectation 
  Graceful degradation (of quality or functionality) 
  Clean failure 
  Make sure the protocol does not run havoc / create damage 
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Mechanisms: Timeouts 
  Path length 

  Primary impact on delay and delay variation 
  Packet loss and degree of multiplexing covered below 

  Issue: Protocols require timers and timeouts 
  Any statically selected value is likely to wrong in some environment 

  Limiting factor for efficiency: too large ones may keep the network idle 
  Cause of unnecessary overhead: too small ones may lead to early retransmissions 

  Example: NFS used 500 ms 

  Solution: Adaptive timers 
  Measure observed RTT and adjust timers accordingly 
  Use moving averages to avoid oscillation to short-term changes 
  Take a sufficiently conservative initial values that will not cause harm 
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Example: TCP RTO Calculation 
  TCP Retransmission Timeout (RTO) 

  Used to determine that a packet got lost and needs retransmission 
  Typically an indication of network congestion 

  Important implication: return to slow start operation 
  Underestimating worse than overestimating 

  Premature RTO will harm performance seriously (spurious retransmits, slow start!) 
  Late RTO will delay repair and hence also harm performance 

  Algorithm 
  RTTVAR (RTT variation) and SRTT (smoothed RTT); G: clock granularity 

  Initial RTO = 3s 
  Upon first RTT measurement (R) 

  SRTT = R  RTTVAR = R/2   
  RTO = SRTT + max (G, K x RTTVAR)       [K=4] 

  For each subsequent RTT measurement (R’) 
  RTTVAR = (1 – β) x RTTVAR + β x | SRTT – R’ |   [β = 1/4] 
  SRTT      = (1 – α) x SRTT + α x R’    [α = 1/8] 
  RTO        = SRTT + max (G, K x RTTVAR)      [K=4] 
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TCP RTO Example 
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Packet loss rate 
  Loss rate 

  Example: Go-Back-N vs. SACK 
  Partially dependent on the degree of multiplexing 

  Issue: distinguishing congestion losses and corruption losses 
  E.g., observing RTO as one hint for congestion likelihood 

  General: congestion control 
  Reduction of data rate 
  Reduction of packet frequency 

  Losses due to bit errors 
  Forward error correction (bit or packet-based) 
  Adaptive retransmission schemes 
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Mechanisms: Congestion Control 
  Data rate 

  Obviously bounded by the slowest link in the path (upper bound) 
  Dependent on the current network load (and thus variable) 
  Other factors: delay and packet losses 

  Issue:  fair resource sharing vs. maximizing resource utilization 
  Protocol entities operate in unknown and changing environments 
  Again, no initial value for a data rate can be assumed 

  Pessimistic assumptions (low rate) may result in underutilization 
  Optimistic assumptions (high rate) may result in overload and lead to congestion 

  Solution: dynamic adaptation of data rate  
  Many different options for rate adaptation 

  Not too conservative (to avoid wasting resources) 
  Not too aggressive (to avoid congestion) 
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Example: Simplified TCP Operation 

Link 
Capacity 

Throughput 

Time 

Slow Start Slow Start Cong. Avoid. Congestion Avoidance 

Timeout 
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Dealing with Long Fat Pipes 
  Networks with large delay x bandwidth product 

  Sufficient bandwidth available 
  Yet limited communication performance 

  Issue: peers cannot utilize available capacity 
  Limitations due to protocol parameters 

  Example: TCP Window size limited the amount of data in flight to 64 KB 
  Limitations due to protocol interactions 

  Examples: Lock-step operation of SMTP initial handshake, of HTTP when downloading 
web pages, of POP3 when downloading emails, of SMB when accessing files 

  Some solutions 
  Sufficiently dimensioned parameters (expect the unexpected) 

  TCP: Window scaling option to multiply advertised window size by 2x 

  Minimize the number of end-to-end interactions 
  SMTP, HTTP: pipelining of requests to avoid RTT penalty  
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Real-world Examples: X11 and SMB in LFNs 
  X11 Protocol 

  Designed for LANs 
  Frequent request-response interaction between client and server 

  Often lock step operation required: operation n+1 depends on result of operation n 

  Many small successive operations cause poor performance 
  Link capacity is not the bottleneck 

  Server Message Block (SMB) 
  Resource (e.g., file and printer) access in LANs 
  RPC-style abstraction leads to horrible implementations 

  Synchronous function calls, apparently assumed to complete in virtually no time 
  Repeated invocation of the same methods 

  Extremely poor performance over long delay links (e.g., satellites) 
  Example: complete file transfer (~15 MB) takes 2.5s in LAN @ RTT=1ms 

     but requires ~6 minutes @ RTT=1s 

  General solution: Performance Enhancing Proxies (PEPs) for applications  
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Lock-step Protocols hit an RTT Ceiling 
Th

ro
ug

hp
ut

 

Data 
rate 

1 ADU 
per RTT 

Scalable 
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Thursday Summary 
  Scalability: constant, logarithmic, linear, 

polynomial, exponential relationships 
  Relative to multiple parameters: (sizes, 

rates, numbers, …) 
  “Protocol designer’s toolkit” 

  Adaptiveness (measure and react) 
  Decentralization, caching, … 

  Scalability also is about economics 
  Throw more hardware vs. better design 
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Impact of Data Rate 
  Complexity of protocol and algorithmic operations may be limited 

by data rate 
  Different scaling of data rate and processing power 
  Processing is one potential bottleneck 
  Applies particularly to routers (but may also affect endpoints) 

  Examples 
  Plain packet forwarding vs. policy-based routing 

  The former works across all wire speeds (“fast path processing”) 
  The latter is limited to “slower” links (no per packet route calculation possible) 

  Tradeoff across different crypto algorithms 
  Public key cryptography operations expensive to compute: limited to small amounts of 

data and occasional use 
  Symmetric crypto algorithms suitable for higher data rates 
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Scaling to large Numbers (1) 
  …of items, users, systems 
  Decentralized operation 

  Also helps with load sharing for implementations 

  Passive: Caching 
  Web caches, DNS 

  Active: Content replication 
  Streaming servers for media on demand content 
  Web servers for news agencies 

  Tradeoff: keeping content current (and synchronized) 
  How well can applications deal with (slightly) out-of-date data? 
  Update frequency from server side only (web and streaming servers) 
  May incur significant complexity with update operations from client 

(e.g., distributed databases) 
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Example: DNS 
  Key features 

  Distributed model: cooperation between servers 
  Redundant servers: avoid single point of failure in zone 

  one primary and one or more secondary servers 

  Hierarchical structure of domain names 
  For decentralized administration and operation 
  Straightforward delegation of responsibility 

  General purpose: not restricted to IP addresses 
  Could map anything 
  Stores additional information about domains 

  Scalability mechanisms 
  Bottom-up search: exploit locality of requests 
  Efficiency through caching 
  Active replication of partial information (DNS servers for domains vs. contents) 
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Example: DNS (2) 
  Decentralization, delegation, locality 

  Dynamic Delegation Discovery System (DDDS) 

netlab.tkk.fi dmn.tzi.org 

tkk.fi tzi.org 

Root servers 
… 

.fi .org 
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Limits to Caching 
  Diversity of item access must be limited relative to cache size 

  Working set must fit 
  Locality helps 

  Sufficient number of requests relative to lifetime of cached items 

  Example: Route caching 
  Works for AS router with small number of entries in forwarding information base 
  Does not work for backbone router with large FIB 
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Example: DHTs (1) 
  Information storage no longer relies on dedicated servers 

  Removes the load on a small number of entities 
  Distributes it across (more or less) equal peers 
  Often used as a synonym for scalability 

  Simplified Operation 
  Peers are organized according to some topology (ring, space, cube, …) 

  Nodes know their neighbors and probably other nodes 
  (Information about) resources are stored on one or more of these peers 
  An index for each resource (=the hash) points (in)directly to their location(s) 
  This hash table is maintained distributed across all nodes 
  If a request is made to a node 

  The request “string” is hashed (algorithmically) and yields a node storing the resource 
  The request is forwarded along the topology (following known links) to the target node 
  The request is answered directly by this node 
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Example: DHTs (2) 
  Some thoughts on the scalability of DHTs 

  First of all: many variants exist for good reasons: design tradeoffs 

  Topology maintenance 
  Maintaining an overlay requires effort as nodes join and leave 

  Adjusting pointers to topological neighbors (and more remote nodes) 
  Moving/replicating resources stored on a leaving node to others 
  Populating a newly arriving node 
  Essentially: balancing the topology and ensuring that the hashing works 

  Unlike servers, clients may get disconnected, turned off, are unreliable, etc. 
  Introduction of “super-peers” (which are well connected and appear more reliable) 
  Possibly a dynamic process 

  Lookup/update overhead 
  Information resources get stored, modified, and retrieved 
  Extreme 1: Make the lookup efficient and the update expensive 
  Extreme 2: Make the lookup expensive but the update cheap 
  Usually something in-between, possibly augmented by some caching 
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Scaling to Large Numbers (2): Deferring Operations 

  Late binding 
  Resolve bindings (e.g. name to address mapping) as late as possible 
  Allows operation with partial knowledge – no global synchronization needed 
  Example: IP telephony 

  SIP User Agents may defer address resolution to their local server 
-  Saves complexity in the endpoint 
-  Saves communication overhead (as the server may perform efficient caching) 

  User location is only performed at the called user’s server 

  Counter-example: DNS 
  IP address needed for any communication 
  Name to address resolution carried out by the endpoint 

-  Requires globally connected naming infrastructure 
-  Exception (counter-counter-example): HTTP proxies resolve names for their clients 

  Lazy Evaluation 
  Do not calculate a result before it is known to be really needed 
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Scaling to Large Numbers (3): Hierarchies 
  “Divide and conquer” 

  Subdivide the large problem into more manageable pieces 

  Example: Directory services 
  E.g., DNS hierarchy 

  Example: Routing protocols 
  Autonomous systems 
  Distinction between Inter-domain and intra-domain routing 

  Only network prefixes are known outside a domain, internal structure is “hidden” 
  Network prefixes may be further aggregated 

  CIDR: Classless inter-domain routing 
  Aggregation of class C addresses 

  IP forwarding operation 
  Across networks based upon IP addresses 
  Within networks based upon link layer addresses 
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Example: Routing Information Protocol (RIP) 
  Protocol-inherent problems for Distance Vector routing 

  Limit the applicability to larger networks 

  Datagram-based route reporting 
  # items to report vs. MTU size 
  Incremental reporting: all routes need to be sent once every 30s  

  Impact on convergence: impossible to tell the absence of an entry 

  Bandwidth requirements for updating 

  Instability during routing changes 
  Convergence to a new consistent view of the network takes a while 
  Temporary path unavailability or loops observable from the endpoints 

  Counting to infinity 
  Need to define infinity so that converging does not take too long 
  Choice: 16! 
  Hard limit on network diameter 
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Scaling to Large Numbers (4): Degradation 
  Accuracy requirements may change depending on the number of 

involved entities 
  Phone conversation vs. small group discussion vs. lecture vs. concert 
  But: distributed database transactions 

  Possible tradeoffs  
  Completeness: not all information (state) may need to be known 

  Select representatives 
  Allow for incomplete views 

  Timeliness: state changes may not need to be communicated immediately 
  Allow temporary inaccuracies 

  Functionality: not all operations make sense for all group sizes 
  Example: Repairing packet losses in a TV broadcast with 1 M receivers 

     vs. repairing packet losses in a three party conference 

  “Loose coupling” 

© 2009 Jörg Ott & Carsten Bormann 42 

HELSINKI UNIVERSITY OF TECHNOLOGY 
DEPARTMENT OF COMMUNICATIONS AND NETWORKING 

Example: RTCP 
  Provides group membership and reception quality information for RTP sessions 

  Must scale with the number of group members 
  Must not take up too much network capacity (rate-limited!) 

  Overall “RTP session bandwidth” 

  Default: 5% of the session bandwidth for RTCP 
  Takes role (sender or receiver) into account 
  Up to 25% of session members are senders: 3.75% for receivers, 1.25% for senders 
  More than 25% of session members are senders: share data rate proportionally 

  Scalable RTCP transmission interval 
  Based upon the group size, RTCP data rate, average RTCP packet size 
  Independently observed by all receivers → calculate their own rate 

  Randomization to avoid synchronization over time 
  Timer reconsideration in case many nodes enter or leave in parallel 

  Default minimum: 5s (2.5 seconds for initial packet) 
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Delegation and Roles 
  Distinct roles with different responsibilities for protocol entities 

  Motivated by system/network design, efficient protocol operation, robustness 
  Explicitly assigned (by configuration) vs. self-organizing (inside the protocol) 

  Supports division of tasks and helps limiting complexity 

  Examples 
  OSPF: Designated Router and Backup Designated Router for broadcast nets 

  Only one router is responsible for forwarding packets 
  Similar concepts for multicasting 

  IGMP: Designated Querier for IGMP membership polling 
  Peer-to-Peer systems: supernodes vs. regular nodes 
  Reliable Multicasting: Repair heads, DLRs, Repetitors for local repair (packet 

retransmission) in subgroups or subtrees 
  Multicast Congestion Control: Current Limiting Receiver (CLR) or Selected 

ACKer to determine acceptable transmission rate 
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Scaling to Small and Large Numbers (5) 
  Careful choice of field sizes and constants required 

  Avoid fixing if possible 
  If necessary, use foresight (tradeoff: overhead vs. longevity) 
  Attention: variable length fields increase processing complexity 

  Examples for limiting field sizes and structure 
  32 bit IPv4 address and its initial (wasteful) address classes 
  IPv4 option space 
  TCP window size (see above) 
  TCP header extension space 
  Port number size (16 bits) and the range allocation (only 16 K dynamic ports) 

  Examples for constants 
  16 = infinity in RIP 
  Initial RTCP timer, minimal RTCP interval 
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Concluding Remarks 
  Scalability means adaptivity 

  “Optimization” problem for multiple input and output parameters 
  Adaptation works only in the order of RTT 
  Beware of oscillation 
  Tradeoff in various dimensions 
  But: Don’t let your protocol get too complex 

  Must be implemented after all 

  Scale as you need! 
  But be aware of your requirements 

  When you don’t know what to expect: be conservative 

  Remember: your protocol might be successful! 


