

Short Announcement

Assignment 2:

You may change your design compared to #1 slightly. But if you do, explain why and how.

© 2008 Jörg Ott & Carsten Bormann

1

Protocol Design

Assignment 3: Protocol Analysis

© 2008 Jörg Ott & Carsten Bormann

2

How robust is your protocol design...? (1)

Analyze your design with respect to:

- Robustness to extended error conditions along the path
 - How many packets lost in a row can you deal with? Error rate?
 - What are the implications of increased loss rate?
 - · How much (variation in) latency is acceptable?
- ▶ Try to come up with situations in which your protocol will be less than perfect
 - Have you considered all boundary cases (zero-length files etc.)?
 - Can you handle all error cases (losses, duplications, ...)?
 - · What kinds of failures do you get:
 - Crash
 - · Lack of progress
 - Incorrect result
 - · Livelock, Jabbering

© 2008 Jörg Ott & Carsten Bormann

:

How robust is your protocol design...? (2)

- Robustness of the sender to a cheating receiver?
 - Concerning congestion control
 - E.g.: Can the receiver make the sender create and sustain congestion on the path?
- Robustness against DoS attacks from men at the side?
 - Can overhear and inject traffic in both directions, but cannot suppress
 - Three attacks:
 - Pretend successful reception
 - Mess up received files
 - Tamper with congestion control to cause link overload
 - Sketch remedies for your protocol design (no complete spec needed)

© 2008 Jörg Ott & Carsten Bormann

4

For fun: how robust is your implementation?

- ▶ What happens...
 - In case of inopportune packet losses
 - In case of borderline parameters
 - After injection of damaging packets
 - · After injection of random packets
- ▶ Google keyword: Fuzzer...

© 2008 Jörg Ott & Carsten Bormann

5