
HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 1

Introduction to Network
Programming using C/C++

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 2

Would be giving Introduction about...

- Parsing command line parameters

- Address structures used by network programming APIs

- Address Conversion/Resolution functions

- Byte Order Conversion

- Socket types and creating a socket

- UDP data transfer

- Sending and Receiving data

- Blocking and Non-Blocking sockets

- I/O Multiplexing using select()

- Protocol FSM

- Packet Pacing

- Scheduling Events

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 3

Parsing Command line parameters
Function: int getopt (int argc, char **argv, const char *options)
Defined in library: unistd.h
Example: (./ProgramName -h xyz.hut.fi -s -p 5345)
int opterr = 0, c = 0;

while ((c = getopt (argc, argv, "h:sp:")) != -1) {

switch(c) {

case 'h': resolveHostName(optarg); break;

case 's': sFlag = 1; break;

case 'p': gotPortNumber(optarg); break;

case '?':

handleError(); // prints Usage Instructions

}

}

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 4

Socket Address Structures
(i) struct sockaddr_in {

short sin_family; // (Address family AF_INET)

unsigned short sin_port; // Port Number

struct in_addr sin_addr;// Expanded below

char sin_zero[8]; // holds zeroes

};

struct in_addr {

 unsigned long s_addr;

 /* contains a unique number for each IP address.

 The output of inet_aton() is stored here */

};

(ii)struct sockaddr {

 short int sa_family;

 char sa_data[14];

};

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 5

Socket Address Structures contd...1

- Both sockaddr and sockaddr_in structures are of same length.
- Socket APIs bind(), recvfrom(), sendto() use sockaddr
structure.
- The normal practice is to fill the stuct sockaddr_in and cast
its pointer to struct sockaddr while calling the functions
Example: (Note: Since it is example – return codes are not checked)

struct sockaddr_in servAddr;

servAddr.sin_family = AF_INET;

servAddr.sin_port = htons(5345);

inet_aton(“130.233.x.y”, &servAddr.sin_addr); // (refer next slide for inet_aton)

int sd = socket(PF_INET, SOCK_STREAM, 0);

bind(sd, (struct sockaddr *)&servAddr, sizeof(struct sockaddr));

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 6

Address Conversion Functions
 Ipv4 Conversion functions: Converts dotted IP address to a
representation understandable by the socket APIs and vice versa.

 int inet_aton

(const char *IP_Address, struct in_addr *addr);

 char * inet_ntoa(struct in_addr in);

 Similar Conversion functions for Ipv6 are

 inet_pton() and inet_ntop()

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 7

Socket Address Structures contd...2
struct hostent {

char *h_name; // Official name of the host
 char **h_aliases; // Alternative names
 int h_addrtype; // Address Type (AF_INET)
 int h_length; // Length of each address
 char **h_addr_list; // Address List
 char *h_addr; // h_addr_list[0]

};

 -gethostbyname() and gethostbyaddr() uses this address structure

- gethostbyname:
struct hostent * gethostbyname (const char *Host_Name)

- gethostbyaddr: (addr is a pointer to struct in_addr)
struct hostent * gethostbyaddr

(const char *addr, size_t length, int format)

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 8

Name/IP Addr. resolution functions

- Functions explained here are used for performing HostName

 to IP address and vice-versa mappings

- These functions are defined in file netdb.h

- They use /etc/hosts or a name server for resolving the address

gethostbyname() Example:
char *HostName = “xyz.hut.fi”; // or an IP address 130.233.x.y

struct hostent *hp = gethostbyname(HostName);

gethostbyaddr() Example:
/* Assume that the struct sockaddr_in ServAddr is already filled with proper
values (refer slide 6) */

struct hostent *hp = gethostbyaddr(

(char *)&ServAddr.sin_addr.s_addr,

 sizeof(ServAddr.sin_addr.s_addr),

AF_INET)

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 9

Byte order conversion

 Network and Host byte order
- All data in the network are sent in 'Big Endian' format
- But different systems use different byte orders
 (i.e., different ways of storing bytes in memory)
- Calling these functions are necessary when setting the
 address parameters that are passed to socket APIs
- Example: unsigned short var = 255; // 0x00FF

Little Endian-> FF 00 (Host Byte Order)
Big Endian-> 00 FF (Network Byte Order)

 Functions used for this conversion purpose
htons() and ntohs() -> for 16 bit variable conversion
htonl() and ntohs() -> for 32 bit variable conversion

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 10

Socket types
 Sockets are the entry and exits through which different process

 communicate
 Different communication method require different socket types

- SOCK_STREAM for TCP

- SOCK_DGRAM for UDP

- SOCK_RAW for sending RAW IP packets

- SOCK_PACKET for sending Link Layer frames
 Example: sd = socket(AF_INET, SOCK_DGRAM, 0);

/* the last argument specifies the protocol, it is normally kept as '0'.

some special case where it is used is, when creating SOCKET_RAW */

 'sd' is called a socket descriptor (the concept is similar to the FILE
descriptor which we are familiar with)
 At this step(after socket() function is called) the socket is not
related to any particular IP address(and port number)

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 11

UDP data transfer
Sending and Receiving data over UDP:
 - Make a socket with SOCK_DGRAM option
 - Bind the socket to a IP address and Port Number
 - Now the socket can be used for both sending and receiving
 data
(The send and recv functions are described in the next slide)

Note for UDP: If you intend to receive data only from a
particular IP address and port number, then you need to verify
the source address of the packet immediately after receiving
the datagram.

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 12

Sending and Receiving data

Sending data over UDP
sendto (int sd, char *buffer, size_t length, int flags,
 struct sockaddr *target, socklen_t addrlen);

Receiving data over UDP (bind() necessary)
bind (int sd, struct sockaddr *target, socklen_t len);
recvfrom (int sd, char *buffer, size_t length, int flags,

 struct sockaddr *target, socklen_t addrlen)

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 13

Blocking and Non-blocking sockets
 - When we call call recvfrom(), the system call checks if any data is

 available at the kernel buffer. If so, it would return with the data.

 - What if no data is available when recvfrom() is called?

- Default Action: It blocks on the call, till it gets the data.

- But if we do not want our program to block in this situation, then

 the socket need to be set as non-blocking.

- In non-blocking mode, the recvfrom() returns with error message

 EWOULDBLOCK (indicating that no data available to be read)

 - function int fcntl(int sfd, int cmd, int flags)

- Using the flags variable, socket can be made non-blocking.

 - In the assignment point of view, we recommend to use blocking mode,

which is the default mode. (to reduce implementation complexity, and

ease of debugging)

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 14

I/O Multiplexing (event driven)

Possible Socket Events: READ_AVAILABLE, WRITE_READY

select (int max_fds, fd_set *read_fds, fd_set *write_fds, fd_set
 *exception_fds, struct timeval *timeout)

 - fd_set is a variable type used by select. It is used store the values
of the socket descriptors that we need to listen on.

 - There are macro functions available to process fd_set variables.
void FD_SET (int sockdes, fd_set *target_set)

 - sets the sockdes in the target_set
FD_CLR (int filedes, fd_set *set)

 - resets the sockdes in the target_set
FD_ISSET (int filedes, const fd_set *set)

 - checks if sockdes is set in target_set

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 15

select contd...

 - Register the socket descriptors in the fd_set

 - Call select()

 - Error if (fatal) terminate;

 else if (repairable) repeat_select_call;

// Ex – if error is EINTR

 - Time-out

 - the time value is specified using the struct timeval

 - NULL pointer represents no time-out

 (blocks till one of the socket descriptors report for action)

 - if timeval is set to {0, 0} -> then it returns immediately

 - Success

 - Determine the active descriptors and handle events

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 16

select() example
rc_select = select (max_sd + 1, &working_fd_set, NULL, NULL, &select_timeout);

/* Check to see if the select call failed. */

if (rc_select < 0) {

 perror("select() failed");

 check error number and act accordingly

}

/* Check to see if the 'n' second time out expired. */

if (rc_select == 0) {

 fprintf(stderr, "\n select() timed out. \n");

 return -1;

}

.....

/* Check to see if there is a incoming connection request or data to be read */

if (FD_ISSET(sd, &working_fd_set)) {

.......

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 17

Checking for errors
 - #include<errno.h> uses a variable errno, that are used by

 functions to report error.

 - function calls(socket(), bind(), send(), recv() etc) set errno value

 that can be used to spot the error quickly.

 - Here we see an example
 rc = bind (int sd, struct sockaddr *ServAddr, socklen_t length);

if (rc < 0) {

perror(“bind failed:”); // prints the errno value in a string format

Call_Exit_Routine();

}

 - When this code(bind()) gets executed with wrong function parameters,

 the possible output values are

 bind failed: socket already has an address

 (you cannot call bind for second time on the same socket)

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 18

Implementing a Protocol - FSM

 Protocol operation can be modelled as Finite State Machine
 Protocol have a set of States

Example: enum protoState {WAITING, READY, BLOCKED}
 State of the Protocol Changes depending on an event

Event Can be arrival of a message(data, ack), timeouts,
memory constraints etc
Events can trigger change in state of the protocol, can trigger
new events(like sending ACK)
Processing of events depends on the current state of the
protocol

 Using FSM, deadlocks can be identified

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 19

Packet Pacing
 To achieve a target bit rate, need to send packets in regular
intervals
 Total Payload Size = Your own protocol header size +

8 bytes UDP + 20 bytes IPv4 + Payload Size
 Inter Packet Interval(IPI)=Total Payload Size/Target BitRate

 Create a timeout event with timeout value as IPI
Handler that handles this event shall reschedule itself at
expiry
While rescheduling, IPI may need to be recalculated if
the state variables indicate change in target bit rate

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 20

Scheduling Events

 Protocol Operation involves many timeouts
Timeouts for packet pacing
Timeouts for triggerring ACK
Timeouts that signals lost connection
and many more depending on your protocol features

 Every Timeout is an scheduled event, represented as
<timeOfExpiry, handlerFunction>
At the expiration of the timer, the corresponding handler
function is invoked

 Maintain a sorted list of timeouts(sorted on timeOfExpiry)

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 21

Scheduling Events Contd..1

Events List

eventId addingEvent(Time, callBackFunction)

void modifyEvent(eventId, time, callBackFunction)

void cancelEvent(eventId)
[At times you need to cancel a scheduled Event

At the expiry of an event, the registered callBackFunction shall be
executed. If the callBackFunction needs a set of args, then
it can also be specified during the process of adding an Event.
Ex: addingEvent(time, callBackFunction, args)

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 22

Scheduling Events Contd..2

 A timeout value can be specified with the select()
function
 This timeout value specified in the select() is taken from
the EventList(refer prev slide)
 While waiting to execute the next scheduled event, the
select() might return with READ_READY Event on a
particular socket descriptor.

The message(event) read from the socket can
possibly insert new event or remove/cancel an already
scheduled event in the EventList

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 23

Questions ?

