
HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 1

Introduction to Network
Programming using C/C++

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 2

Would be giving Introduction about...

- Parsing command line parameters

- Address structures used by network programming APIs

- Address Conversion/Resolution functions

- Byte Order Conversion

- Socket types and creating a socket

- UDP data transfer

- Sending and Receiving data

- Blocking and Non-Blocking sockets

- I/O Multiplexing using select()

- Protocol FSM

- Packet Pacing

- Scheduling Events

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 3

Parsing Command line parameters
Function: int getopt (int argc, char **argv, const char *options)
Defined in library: unistd.h
Example: (./ProgramName -h xyz.hut.fi -s -p 5345)
int opterr = 0, c = 0;

while ((c = getopt (argc, argv, "h:sp:")) != -1) {

switch(c) {

case 'h': resolveHostName(optarg); break;

case 's': sFlag = 1; break;

case 'p': gotPortNumber(optarg); break;

case '?':

handleError(); // prints Usage Instructions

}

}

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 4

Socket Address Structures
(i) struct sockaddr_in {

short sin_family; // (Address family AF_INET)

unsigned short sin_port; // Port Number

struct in_addr sin_addr;// Expanded below

char sin_zero[8]; // holds zeroes

};

struct in_addr {

 unsigned long s_addr;

 /* contains a unique number for each IP address.

 The output of inet_aton() is stored here */

};

(ii)struct sockaddr {

 short int sa_family;

 char sa_data[14];

};

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 5

Socket Address Structures contd...1

- Both sockaddr and sockaddr_in structures are of same length.
- Socket APIs bind(), recvfrom(), sendto() use sockaddr
structure.
- The normal practice is to fill the stuct sockaddr_in and cast
its pointer to struct sockaddr while calling the functions
Example: (Note: Since it is example – return codes are not checked)

struct sockaddr_in servAddr;

servAddr.sin_family = AF_INET;

servAddr.sin_port = htons(5345);

inet_aton(“130.233.x.y”, &servAddr.sin_addr); // (refer next slide for inet_aton)

int sd = socket(PF_INET, SOCK_STREAM, 0);

bind(sd, (struct sockaddr *)&servAddr, sizeof(struct sockaddr));

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 6

Address Conversion Functions
 Ipv4 Conversion functions: Converts dotted IP address to a
representation understandable by the socket APIs and vice versa.

 int inet_aton

(const char *IP_Address, struct in_addr *addr);

 char * inet_ntoa(struct in_addr in);

 Similar Conversion functions for Ipv6 are

 inet_pton() and inet_ntop()

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 7

Socket Address Structures contd...2
struct hostent {

char *h_name; // Official name of the host
 char **h_aliases; // Alternative names
 int h_addrtype; // Address Type (AF_INET)
 int h_length; // Length of each address
 char **h_addr_list; // Address List
 char *h_addr; // h_addr_list[0]

};

 -gethostbyname() and gethostbyaddr() uses this address structure

- gethostbyname:
struct hostent * gethostbyname (const char *Host_Name)

- gethostbyaddr: (addr is a pointer to struct in_addr)
struct hostent * gethostbyaddr

(const char *addr, size_t length, int format)

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 8

Name/IP Addr. resolution functions

- Functions explained here are used for performing HostName

 to IP address and vice-versa mappings

- These functions are defined in file netdb.h

- They use /etc/hosts or a name server for resolving the address

gethostbyname() Example:
char *HostName = “xyz.hut.fi”; // or an IP address 130.233.x.y

struct hostent *hp = gethostbyname(HostName);

gethostbyaddr() Example:
/* Assume that the struct sockaddr_in ServAddr is already filled with proper
values (refer slide 6) */

struct hostent *hp = gethostbyaddr(

(char *)&ServAddr.sin_addr.s_addr,

 sizeof(ServAddr.sin_addr.s_addr),

AF_INET)

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 9

Byte order conversion

 Network and Host byte order
- All data in the network are sent in 'Big Endian' format
- But different systems use different byte orders
 (i.e., different ways of storing bytes in memory)
- Calling these functions are necessary when setting the
 address parameters that are passed to socket APIs
- Example: unsigned short var = 255; // 0x00FF

Little Endian-> FF 00 (Host Byte Order)
Big Endian-> 00 FF (Network Byte Order)

 Functions used for this conversion purpose
htons() and ntohs() -> for 16 bit variable conversion
htonl() and ntohs() -> for 32 bit variable conversion

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 10

Socket types
 Sockets are the entry and exits through which different process

 communicate
 Different communication method require different socket types

- SOCK_STREAM for TCP

- SOCK_DGRAM for UDP

- SOCK_RAW for sending RAW IP packets

- SOCK_PACKET for sending Link Layer frames
 Example: sd = socket(AF_INET, SOCK_DGRAM, 0);

/* the last argument specifies the protocol, it is normally kept as '0'.

some special case where it is used is, when creating SOCKET_RAW */

 'sd' is called a socket descriptor (the concept is similar to the FILE
descriptor which we are familiar with)
 At this step(after socket() function is called) the socket is not
related to any particular IP address(and port number)

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 11

UDP data transfer
Sending and Receiving data over UDP:
 - Make a socket with SOCK_DGRAM option
 - Bind the socket to a IP address and Port Number
 - Now the socket can be used for both sending and receiving
 data
(The send and recv functions are described in the next slide)

Note for UDP: If you intend to receive data only from a
particular IP address and port number, then you need to verify
the source address of the packet immediately after receiving
the datagram.

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 12

Sending and Receiving data

Sending data over UDP
sendto (int sd, char *buffer, size_t length, int flags,
 struct sockaddr *target, socklen_t addrlen);

Receiving data over UDP (bind() necessary)
bind (int sd, struct sockaddr *target, socklen_t len);
recvfrom (int sd, char *buffer, size_t length, int flags,

 struct sockaddr *target, socklen_t addrlen)

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 13

Blocking and Non-blocking sockets
 - When we call call recvfrom(), the system call checks if any data is

 available at the kernel buffer. If so, it would return with the data.

 - What if no data is available when recvfrom() is called?

- Default Action: It blocks on the call, till it gets the data.

- But if we do not want our program to block in this situation, then

 the socket need to be set as non-blocking.

- In non-blocking mode, the recvfrom() returns with error message

 EWOULDBLOCK (indicating that no data available to be read)

 - function int fcntl(int sfd, int cmd, int flags)

- Using the flags variable, socket can be made non-blocking.

 - In the assignment point of view, we recommend to use blocking mode,

which is the default mode. (to reduce implementation complexity, and

ease of debugging)

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 14

I/O Multiplexing (event driven)

Possible Socket Events: READ_AVAILABLE, WRITE_READY

select (int max_fds, fd_set *read_fds, fd_set *write_fds, fd_set
 *exception_fds, struct timeval *timeout)

 - fd_set is a variable type used by select. It is used store the values
of the socket descriptors that we need to listen on.

 - There are macro functions available to process fd_set variables.
void FD_SET (int sockdes, fd_set *target_set)

 - sets the sockdes in the target_set
FD_CLR (int filedes, fd_set *set)

 - resets the sockdes in the target_set
FD_ISSET (int filedes, const fd_set *set)

 - checks if sockdes is set in target_set

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 15

select contd...

 - Register the socket descriptors in the fd_set

 - Call select()

 - Error if (fatal) terminate;

 else if (repairable) repeat_select_call;

// Ex – if error is EINTR

 - Time-out

 - the time value is specified using the struct timeval

 - NULL pointer represents no time-out

 (blocks till one of the socket descriptors report for action)

 - if timeval is set to {0, 0} -> then it returns immediately

 - Success

 - Determine the active descriptors and handle events

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 16

select() example
rc_select = select (max_sd + 1, &working_fd_set, NULL, NULL, &select_timeout);

/* Check to see if the select call failed. */

if (rc_select < 0) {

 perror("select() failed");

 check error number and act accordingly

}

/* Check to see if the 'n' second time out expired. */

if (rc_select == 0) {

 fprintf(stderr, "\n select() timed out. \n");

 return -1;

}

.....

/* Check to see if there is a incoming connection request or data to be read */

if (FD_ISSET(sd, &working_fd_set)) {

.......

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 17

Checking for errors
 - #include<errno.h> uses a variable errno, that are used by

 functions to report error.

 - function calls(socket(), bind(), send(), recv() etc) set errno value

 that can be used to spot the error quickly.

 - Here we see an example
 rc = bind (int sd, struct sockaddr *ServAddr, socklen_t length);

if (rc < 0) {

perror(“bind failed:”); // prints the errno value in a string format

Call_Exit_Routine();

}

 - When this code(bind()) gets executed with wrong function parameters,

 the possible output values are

 bind failed: socket already has an address

 (you cannot call bind for second time on the same socket)

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 18

Implementing a Protocol - FSM

 Protocol operation can be modelled as Finite State Machine
 Protocol have a set of States

Example: enum protoState {WAITING, READY, BLOCKED}
 State of the Protocol Changes depending on an event

Event Can be arrival of a message(data, ack), timeouts,
memory constraints etc
Events can trigger change in state of the protocol, can trigger
new events(like sending ACK)
Processing of events depends on the current state of the
protocol

 Using FSM, deadlocks can be identified

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 19

Packet Pacing
 To achieve a target bit rate, need to send packets in regular
intervals
 Total Payload Size = Your own protocol header size +

8 bytes UDP + 20 bytes IPv4 + Payload Size
 Inter Packet Interval(IPI)=Total Payload Size/Target BitRate

 Create a timeout event with timeout value as IPI
Handler that handles this event shall reschedule itself at
expiry
While rescheduling, IPI may need to be recalculated if
the state variables indicate change in target bit rate

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 20

Scheduling Events

 Protocol Operation involves many timeouts
Timeouts for packet pacing
Timeouts for triggerring ACK
Timeouts that signals lost connection
and many more depending on your protocol features

 Every Timeout is an scheduled event, represented as
<timeOfExpiry, handlerFunction>
At the expiration of the timer, the corresponding handler
function is invoked

 Maintain a sorted list of timeouts(sorted on timeOfExpiry)

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 21

Scheduling Events Contd..1

Events List

eventId addingEvent(Time, callBackFunction)

void modifyEvent(eventId, time, callBackFunction)

void cancelEvent(eventId)
[At times you need to cancel a scheduled Event

At the expiry of an event, the registered callBackFunction shall be
executed. If the callBackFunction needs a set of args, then
it can also be specified during the process of adding an Event.
Ex: addingEvent(time, callBackFunction, args)

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 22

Scheduling Events Contd..2

 A timeout value can be specified with the select()
function
 This timeout value specified in the select() is taken from
the EventList(refer prev slide)
 While waiting to execute the next scheduled event, the
select() might return with READ_READY Event on a
particular socket descriptor.

The message(event) read from the socket can
possibly insert new event or remove/cancel an already
scheduled event in the EventList

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2008 Jegadish. D 23

Questions ?

