
© 2008 Jörg Ott & Carsten Bormann 1

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

S-38.3157

Protocol Design

2007–2008, 4th period

Jörg Ott jo@netlab.tkk.fi SE 324
Carsten Bormann cabo@tzi.org ?
Jegadish Devadoss jegadish@netlab.tkk.fi SE 325
Mikko Kiiski makiiski@netlab.tkk.fi n/a

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

2

General
Architectures, mechanisms, principles, issues, and pitfalls for
protocol design from a conceptual viewpoint (examples!)
(taking an Internet perspective)

Lectures: Tuesday, 14 – 16, S2 and Thursday, 12 – 14, S2
Exercise (assignments + practical stuff): Thursday, 14 – 16, E110

Prerequisites
S-38.(2)188 (or equivalent knowledge)
Further background in looking at or working with protocols desirable
Interest in protocols and their technical realization
Substantial coding skills (no novice in C/C++, Java, … for communications)

Suitable for graduate and postgraduate studies: 4 ECTS points

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

5

Theoretical and Practical Assignments
3 Assignments

Practical Assignments with theoretical documentation / motivation
The practical coding assignments building on top of one another
Create the structure of a communication application
Deal with socket i/o and related system calls
Support parameterization and some visualization (no GUIs!)
Make design choices for a small protocol (and possibly regret them later)
Document (motivate and defend) parts of your design in writing

C/C++, Java, Perl, Ruby, … (choose your favorite language) code
Write portable applications to be run on machines in a university computer pool (Maari-A)

Small groups: 3
Send one email per group in exactly the following format (one line per group member)
“Last name:First name:IDs:email address”

Completion: usually 2 weeks, last one until 26 May 2008 (no extensions!)
Send email with tgz or zip archive of source, build environment
Result review yet to be decided

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

6

Assignments
1. Design

Develop and specify a protocol to achieve a certain task
2. Implementation (and validation)

Implement a small protocol specification
Review with the teaching assistants

3. Analysis
Closer to the end of the course
Analyze an IP-based protocol with respect to the protocol design aspects we will have
discussed

Keep in mind the Internet architecture and design principles

All assignments must be completed
Grading of assignments based upon all assignment parts

Will add points to the final exam

50% of the points from the assignments required to pass

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

7

Exam
12 May 2008, 13 – 16, S5

8 tasks (classified into categories a, b, and c)
4–5 type a: relatively short answers (mostly knowledge)
2–3 type b longer answers
1 type c: small design and/or analysis task

50% of the points required to pass

3 hours time

Hints in the last lecture (6 May 2008)

Total grade based upon the exam plus assignments
60 – 75% exam
25 – 40% assignments

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

8

Material
Slides will be online as PDF

Primary literature: RFCs, Internet Drafts, research papers
We will point to some recommended ones for studying
Do-it-yourself: google, ACM & IEEE digital library, …

Books
There are some old ones (beginning to middle of the 1990s)

Different focus than the course: mostly on mechanics and approaches
Not so much about design principles and experience

Sometimes individual chapters in books have useful contents
Example: Radia Perlman: Interconnections: Bridges, Routers, Switches, and
Internetworking Protocols, 2nd Edition, 1999. Chapter 18 (available online)

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

9

Relation to other Netlab Courses
38.(2)188: Computer Networking: prerequisite

Some minor overlap (when repeating some stuff)

38.(3)115: Signaling Protocols: complementary
38.3152: Networked Multimedia Protocols and Services: complementary

Can be done before or afterwards
Helpful if done before

S-38.3151: Delay-tolerant Networking
Lecture with (practical) assignments, next term, 1st period
Looks at particular environments for different style of protocol design

S-38.3155: Seminar on Challenged Networks
Postgraduate seminar, Spring term 2009, 3rd period
Addresses specific subject matters of delay-tolerant and other challenged networks

S-38.(3)158: Protocol Design – Practical Assignment: will not happen any more
Special assignments can be an interesting follow-up for those interested

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

10

Contents 1
1. State sharing and reliability

2. Scalability concerning many dimensions

3. Resource consumption and fairness (network and endpoints)

4. Naming and Addressing

5. Protocol syntax and encoding

6. Security 1: Robustness

7. Security 2: Protocol Design Techniques

8. Intermediaries: NATs/firewalls (+ proxies, gateways, routers)

9. End-to-middle signaling

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

11

Contents 2
10. Interoperability, Evolveability

11. Internet design principles (and their evolution)

12. Taking protocols to the real world

13. Considerations on specific link layers and networks

14. Meta-aspects of design: financial, political, human

15. Case studies

16. Future in protocol design

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

12

Further Information
Course web page

http://www.netlab.tkk.fi/opetus/s383157/2008/index.html

Newsgroup
opinnot.sahko.s-38.tietoverkkotekniikka

Material and other resources will be placed on the course page

Important: don’t try to learn just from the slides!

Feedback is always welcome at any time!

© 2008 Jörg Ott & Carsten Bormann 13

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Protocol Design

Overview and Course Focus

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

14

Motivation: Why Protocol Design?
New applications appear all the time – more and more net-based
Within applications, functional decomposition and distribution
makes protocol design an inherent part of system design

Evolution of communication technology incurs new demands
Environmental changes require reconsidering the design of
existing protocols
Migration (aka “convergence”) requires re-thinking solutions to old
problems for a new environment (e.g. IP telephony, IP TV)

Vast variety of problems and solutions
Simple (e.g., just use RPC) vs. complex (BGP-4 for telephone numbers)
All layers (from wireless MAC to QoS to autoconfiguration to applications)
Closed environments (within a product) to open standards

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

15

What is Protocol Design?
Many possible views

Mathematical modeling
Design and correctness proofs

Protocol engineering process
Management and process aspects of protocol design (software engineering view)

Building blocks and design patterns
Mechanisms for certain functions in creating protocols

Tool chains for protocol specification, implementation, and validation
Automating the creation process (but not the conceptual thinking)

…
We are interested in

Why some designs work better (get accepted) than others (which don’t)
Ideas of what is known as good practice beyond the engineering literature
Understanding relationship between functional and non-functional aspects
Considering some non-technical real-world aspects as well

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

16

Conceptual design Tools (mechanical design)

Devising technologies Applying technologies

ea
rli

er

la
te

r

Sample Protocol Design Process

Requirements

Design and validation

Maintenance

Implementation

Test & Validation

(just a random diagram – variation of the waterfall model)

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

17

Requirements Aspects
Understanding which problem to solve

Real problems vs. thoughts about solutions in search for a problem
Understanding the requirements

Functional: features, security, …
Non-functional: scale, operational aspects, time-to-market, cost

Understanding the constraints
Functional: operational environment
Non-functional: cost, weight, energy consumption, memory, CPU, …

Understanding the acceptable tradeoffs
Must vs. nice-to-have

Is this some special case of a more general problem?
If so: does the problem become simpler by generalizing?

If not, is the more general problem worth solving?

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

18

Some General Protocol Design Aspects (1)
Design scope

Part of a specific application design
Creation of a platform for a competitive environment

Design target
Complete solution, e.g., for an application
Creation of building blocks targeted at flexible re-use
Use of building blocks or technologies to create a particular solution

Important design decision: Make or take
Re-use existing technologies (accept less than 100% match)

Benefit from experience, code, etc.
But: who has change control, how long will the technology be supported,
does it really fit, will both protocols evolve in parallel, …?

Create new technology from scratch (accept higher risk, longer time to market)

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

19

Some General Design Aspects (2)
Learning from solutions to related problems

Borrow concepts and mechanisms – but only where applicable!
Avoid mistakes. Look at real-world deployments before borrowing
Yet avoid the “second system syndrome”

Remember requirements during the design phase

Some simplified meta rules (“protocol folklore”)
Optimize for the common case (if at all)
Don’t overengineer – Keep it simple stupid (KISS)
Avoid options and parameters
Remember that it needs to be implemented in the end

(we will address these and more such issues during the course)

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

20

Some General Protocol Design Aspects (3)
Separation of concerns

Treat and solve independent aspects independently
Caveat: what is really independent?

(Strict) layering
Block box, well-defined service access points (SAPs) with layer-internal protocols
Intends to completely shield lower layers and communication details from higher layers

Leaky abstraction
Strict layering will not always work, particularly if things go wrong
Expose issues rather than trying to conceal them at any cost
Applies to protocol design, to coding (and code generation), and others

Cross-layer optimization gaining importance
Deal with dependencies on the lower layers
Limit: your system is not always directly connected to the weakest link (layer)

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

21

Design Validation
Protocol design is relevant to later protocol validation

From a correctness perspective
From a performance perspective

1. Correctness of a specification
May involve formal specification as design methods

Using your favorite modeling or specification language

May involve formal proofs
Mostly for “simple” protocols and problems

2. Performance of a specification
Mathematical modeling and analysis
Evaluation by means of “implementation” and simulation

Both validations provide important feedback for the design process

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

22

Implementation & Validation
Protocol implementations need to be correct and interoperable

Beware of specification complexity!
In some cases, code may be generated from specifications using tools

Again: validation
Limited functional validation through testing

Test cases may be generated from specifications
Usually cover only usage scenarios of limited complexity (explosion of number of tests)

Performance validation through emulation and field tests with measurements

Difficulty: getting even close to the real-world conditions (in the lab)
True validation will only occur through real world deployment (“in the wild”)
Different platforms, different implementations, different user behavior, different
environmental conditions, (different interpretations of the spec), …

Will also tell something about the impact on the network at large

Implementation experience provides most important feedback

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

23

Conformance vs. Interoperability
Traditional thinking:

All implementations must conform to specification
If specification is good, this ensures interoperability
Tools developed to turn formal specifications into code

Let’s not talk about efficiency…

Modern thinking:
Implementations have errors
Specifications have errors and ambiguities
Interoperability is actually more important than conformance

This includes interoperability with erroneous, but deployed systems

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

24

Operations and Maintenance
Rollout

Deployment, configuration

Monitoring
Protocol and device operation
Its impact on its environment
Real feedback about the suitability of a protocol

-

Diagnosis, Debugging

Protocol evolution over time
To fix bugs
To meeting changing or new requirements

To get rid of unnecessary requirements and constraints

To deal with changing environmental conditions

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

25

A Note on Protocols in the Real World
Protocol design usually makes assumptions

About the environment it will operate in
Technical terms: packet network, delay, packet loss, MTU, range of data rate, etc.
Organization terms: trust, common management, configuration, interaction, etc.

Lower layer services and characteristics to build upon
Higher layer applications using it

Protocols may be successful or even “hyped”
Examples today: HTTP, SIP, XML, to some extent SOAP, …

If they are, they will be used outside their specified limits
In different environments, at different scales, for different purposes, …

People will blame the designer if they don’t work properly then
Applicability statements are not necessarily read or adhered to

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

26

Some Examples for who does Protocol Design

A (formal) standards body
Without link to reality: driven by formal processes and voting
With link to reality: driven by perceived needs, usually well-defined deliverables
Worry about network and protocol architecture at large

An industry consortium to make the market grow
Driven by (artificial, perceived) deadlines and limited by compromise
Worry about system architecture in a given market segment (to suit their needs)

A group in an enterprise trying to get a specific problem solved
Driven by immediate (and mid-term) customer needs
Worry about product architecture and environmental constraints

Researchers/scientists
Driven by solving complex problems in an elegant way

May be tempted to get 110% of a solution for some problem aspect (not necessarily for all)
Biggest potential for long-term architectural thinking (often not considered)

© 2008 Jörg Ott & Carsten Bormann 27

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Subject Areas of Protocol Design

General design space
Functional building blocks
Meta design aspects

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

28

Protocol Design is about Trade-Offs…
…given sets of requirements and environmental constraints.

“Good, fast, cheap – pick two, you cannot have all three.”

Examples
Reliability vs. delay
Functionality vs. bandwidth
Extensibility vs. efficiency
Functionality vs. simplicity

Virtually any design decision taken to achieve one goal will
counteract another

Need to find a reasonable compromise to achieve desired function at
acceptable cost

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

29

Where Theory meets Practice…
Many design rules for protocols can be found

Mechanisms to achieve certain functionality
Keep it flexible and extensible
Make it effective and efficient (optimize)
Make it resilient
…

To be applied wisely (not blindly)
Considering the trade-offs
No single rule set will fit all circumstances

Beware of complexity
People will blame the their device or technology if the stuff doesn’t (inter)work

Regardless of where the problem is
Too expensive or too difficult to use

Premature [micro-]optimization is the root of all evil (Hoare/Knuth)
…

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

30

Communicating Partners and their Roles (1)
Point-to-point vs. multipoint communications

How many parties are involved in the protocol (from a semantics perspective)?

Unicasting vs. group-overlays vs. multicasting
What type of information exchange is assumed?

Client-server vs. peer-to-peer communications
Are the involved parties “equal” or do they have different responsibilities

Note: peer-to-peer is more general than today’s widespread “P2P” applications

In case of groups: are some more important than others?
More than just two different classes of peers

Communication among end systems vs. among network elements
Transport and application vs. routing, network, maintenance protocols

End-to-middle communications

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

31

Communicating Partners and their Roles (2)
End-to-end vs. intermediaries vs. router-assist

What kind of entities may, are, or must be involved? Are they “visible” or not?
Intermediaries: notion depends on the application

Hidden vs. visible
Facilitating rendezvous

SIP servers, mail servers
Relaying / forwarding functions

Mail servers, SIP servers, web proxies (firewall traversal)
Necessary or useful application functions

Mail servers: storage, protocol conversion, virus checking, …
Optimization application functions

Web caches
Lower layer functions (hidden)

Firewalls, NATs, …

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

32

Identifying Communication Partners
Names

Human readable identifiers that can be remembered!
(e.g., DNS name, URI, URN)

Identifiers
Machine-processable identifier (e.g., Host Identity, HI)

Addresses
Protocol-level identifier (e.g., IP address)

Locators
Information about the location of a partner in the network topology

Different levels: interfaces vs. machines vs. applications vs. users

Need to be managed (unique assignment)
Or chosen randomly (and defended) in ad-hoc environments (☇birthday paradox)

One needs to resolved into the other
Address books, (distributed) data bases (e.g., DNS, DHTs), protocol exchanges,
caching, (manual) configuration, …

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

33

Functional Building Blocks (1)
Naming and addressing
Rendezvous or invocation mechanisms

Semantics and properties of protocol operations
Idempotent operations, delta vs. full state updates, synchronization, …

Interaction paradigms
Synchronous, asynchronous, both
RPC-style operation vs. event notifications at any time

Degree of coupling
How closely have protocol entities to stay in sync?

Degree of “Reliability”
Includes flow control, sequence preservation, etc.
How probable is it that a certain operation will not fail.

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

34

Functional Building Blocks (2)
Multiplexing

Within the application protocol vs. using lower/requiring higher layer mechanisms

“Multi-threading”
Allowing multiple ongoing interactions at the same time
E.g. lock-step vs. “windowing”

Security
Authentication, integrity, non-repudiation (sender, receiver), confidentiality
Authorization of operations

(Auto)configuration
How to get a system into a working condition

(Mechanics: specification format, notation, syntax, encoding, …)

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

35

Meta Aspects of Protocol Design (1)

Adaptivity
Capability of adapting to different environmental conditions (typically “QoS”)
(graceful degradation of service as long as acceptable)

Example: playout delay and codec adaptation with IP multimedia

Scalability
Capability of working across a wide range of environmental parameters

Typical example: Number of operational nodes
Data rate, error rate, path length, delay (see above)
Number and size of data items

Efficiency
Maintaining a reasonable level of overhead

Example: protocol encoding, protocol headers

Independent of specific functions, yet to be provided in line with the respective protocol

© 2008 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMMUNICATIONS AND NETWORKING

36

Meta Aspects of Protocol Design (2)
Performance

Number of protocol interactions, packets, bits, processing
But don’t optimize (too early in the process)!

Security (again!)
Deployability

One special case: robustness (against DoS, single point of failure, etc.)
Another special case: ability for stepwise introduction into the real world

Evolvability
Backward and forward compatibility

Operability and manageability

