
HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2007 Mikko Kiiski 1

Introduction to Network
Programming using Java

© 2007 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

2

Starting Point Using Java

 IDE
Unix/Linux available in the department
Alternative: MS Windows workstations
Using Sun JDK

 Information sources
Today’s slides and examples
Details on the web page
 javadoc, Google
Send mail to assistants (if everything else has failed)

© 2007 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

3

The Goals in the assignments
 Workable software

 Remember that you will need to build upon this later
Compiled and tested on the department workstations (Maari-A) (Unix/Linux)
Learning: how to get there
Functionality: to actually arrive at a working solution

 Documentation
Shows that you understood the problem and the solutions
Helps you to remember what you were thinking today in two months from now
Helps us to understand what you meant to do
→ There should be no “wrong” solutions (only malfunctioning ones)

 Working with development tools
Ant for building and svn for version control
Using IDE (Eclipse, NetBeans, JCreator ...)
Make script to start your test scenarios

© 2007 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

4

Parse Command Line in Java
public static void main(String[] args)

// String array containing the program arguments

// Example iterating through array

for (int i = 0; i < args.length; i++) {

String type = args[i++];

String value = args[i];

if(type.equalsIgnoreCase("-l")){

// use value

setExampleParameter(value);

}

}

Or use apache jakarta project:
http://jakarta.apache.org/commons/cli/introduction.html

http://jakarta.apache.org/commons/cli/introduction.html

© 2007 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

5

Resolve hostname

 Transform a symbolic name into a protocol-specific address
 Attention: different address formats and lengths!

 Select the most suitable implementation for the specific task

 APIs
java.net.InetAddress
public static InetAddress getByName(String host)
public static InetAddress getByAddress(byte[] addr)
java.net.InetSocketAddress

 J2SE 1.5.0 API Documentation
http://java.sun.com/j2se/1.5.0/docs/api/index.html

http://java.sun.com/j2se/1.5.0/docs/api/index.html

© 2007 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

6

To Get Detailed Address Info
 Get detailed address info using java.net.InetAddress subclasses java.net.Inet4Address

or java.net.Inet6Address
 For example following methods are available

 boolean isMCGlobal()
 Utility routine to check if the multicast address has global scope.

 boolean isMCLinkLocal()
 Utility routine to check if the multicast address has link scope.

 boolean isMCNodeLocal()
 Utility routine to check if the multicast address has node scope.

 boolean isMCOrgLocal()
 Utility routine to check if the multicast address has organization scope.

 boolean isMCSiteLocal()
 Utility routine to check if the multicast address has site scope.

 boolean isMulticastAddress()
 Utility routine to check if the InetAddress is an IP multicast address.

© 2007 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

7

Socket Creation
java.net.Socket

java.net.ServerSocket

java.net.DatagramSocket

java.net.MulticastSocket

java.net.Socket()
 Creates an unconnected socket, with the system-default

 type of SocketImpl.
java.net.Socket(InetAddress address, int port)

 Creates a stream socket and connects it to the specified
 port number at the specified IP address.

java.net.ServerSocket()

 Creates an unbound server socket.
java.net.ServerSocket(int port)

 Creates a server socket, bound to the specified port.

© 2007 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

8

Sending Data
 Connection-oriented (TCP)

 java.net.Socket(InetAddress address, int port)
 Creates a stream socket and connects it to the
 specified port number at the specified IP address.

 java.net.Socket.getOutputStream()
 Write into OutputStream using suitable classes

 Connectionless (UDP)
 java.net.DatagramSocket(int port)

 Constructs a datagram socket and binds it to the
 specified port on the local host machine.

 java.net.DatagramPacket(byte[] buf, int length, InetAddress
address, int port)
 Constructs a datagram packet for sending packets of length
 length to the specified port number on the specified host.

 java.net.DatagramSocket.send(DatagramPacket p)
 Sends a datagram packet from this socket.

© 2007 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

9

Receiving Data
 Data reception (UDP) using java.net.DatagramSocket

DatagramSocket.receive(DatagramPacket pPacket)
 Receives a datagram packet from this socket. The DatagramPacket
contains the bytes transmitted.

 Data reception (TCP) using java.net.Socket
InputStream Socket.getInputStream()

 Read InputStream using suitable classes

 To modify socket behaviour check the setter methods of the
specified implementation

© 2007 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

10

I/O multiplexing
 Use Java NIO (new I/O) API

NIO sockets can operate in non-blocking mode
One thread can manage huge numbers of socket channels
Better resource utilization

 Use search engines to find tutorial available in web
 Starting points

http://java.sun.com/j2se/1.4/nio/index.html
http://javanio.info/

http://java.sun.com/j2se/1.4/nio/index.html
http://javanio.info/

© 2007 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

11

Packet pacing

 To achieve a target bit rate, need to send packets in regular
intervals

 Calculate your target packet interval from the packet size…
Your own header + 8 bytes UDP + 20 bytes IPv4 + 1024 bytes payload

 …and the target bit rate on the command line

 Use a recurring timer for transmission
Important: calculate your transmission interval based upon a single initial

absolute time value
 E.g. Create your packet schedule using timers

Do not do regular calculations
 This will lead to underutilization as it does not account for local processing time

© 2007 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

12

Hints (1)
 Try to group a certain set of functionalities into a specified class
 Use design patterns to get a controlled structure for your program

For example Observer – Observable pattern can be used to deliver the
received data for multiple users

 Try to use java.io and java.net packages to achieve simpler
program structure than using the java.nio package

© 2007 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

13

Hints (2)

 Use worker threads to receive multiple connections for a single
server socket

 while(serverIsRunning){
 // ConnectionHandler is own class implementing the Runnable interface
 ConnectionHandler worker;
 try{

//server.accept returns a client connection
worker = new ConnectionHandler(server.accept());
Thread t = new Thread(worker);

 t.start();
 } catch (IOException e) {
 // handle the exceptions
 }
 }

© 2007 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

14

Hints (3)
 Check the java.util.Timer class

A facility for threads to schedule tasks for future execution in a background
thread.

Tasks may be scheduled for one-time execution, or for repeated execution at
regular intervals.

© 2007 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

15

Hints (4)
 Check the java.util.Random class

An instance of this class is used to generate a stream of pseudorandom
numbers.

The class uses a 48-bit seed, which is modified using a linear congruential
formula.

© 2007 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

16

Hints (5)

 To handle shutdown signal use addShutdownHook() method for
Runtime class
Runtime.getRuntime().addShutdownHook(new Thread() {

 public void run() {

 System.out.println ("Called at shutdown.");

 }

 });

 Other alternative is to use handle() method in sun.misc.Signal
class to catch signals
public static void main(String[] args) throws Exception {
 Signal.handle(new Signal("INT"), new SignalHandler () {
 public void handle(Signal sig) {
 System.out.println(
 "Received a interrupt!!");
 }
 });
 //
 }

