Some Findings from Assignment 1

Wide variety of specifications:

» From 1 to 10 pages

» More protocol spec vs. more implementation spec
» More or less complete (at a first glance)

© 2007 Jorg Ott & Carsten Bormann

Encodings

» JSON (text-based)
e Base64-encoded data

» Unknown

» 3 x Box notation (binary)

® Single bit to distinguish between data and control packet
* Packet type field

Text-based for control, binary for packets?

RFC 822-style with 8-bit encoding for the data part

Binary 64-bit words + scrambling to avoid deterministic bit errors
HTTP-style + RFC 822

v Vv Vv Vv

© 2007 Jorg Ott & Carsten Bormann

\ HELSINKI UNIVERSITY OF TECHNOLOGY

NETWORKING LABORATORY

Protocol Operation (1)

» Connection setup

e Explicit establishment via some handshake mechanism
= Two-way, three-way, four-way, cookies against DoS

» File transmission
e Various forms of checksums (e.g., MD5, HMACS)
e Sequence numbers
e Data + ACK (cumulative, selective ACKSs)
e Data + NACK + a final ACK
¢ Dynamic RTO calculation

» Flow control
e Explicit window size indication
¢ Fixed window (negotiated at session setup)
e Window size derived from delay x bandwidth product

© 2007 Jorg Ott & Carsten Bormann

\ HELSINKI UNIVERSITY OF TECHNOLOGY

NETWORKING LABORATORY

Protocol Operation (2)

» Completion
e Explicit end signaling + confirmation
e Implicit server-side detection leads to confirmation
¢ Plain shutdown (and hope)?

» Parallel upload
® Transparent to the protocol

© 2007 Jorg Ott & Carsten Bormann

Some Observations on Possible Constraints

» Limited sizes (filename < 255 characters)
» Manual mapping: media type -> binary constant
¢ Need to keep up to date

» Sometimes many options
® |s there a common baseline?

» Did you think about sequence number wrap around?

© 2007 Jorg Ott & Carsten Bormann

Protocol Design

Assignment 2:

1. Solution analysis

2. Stress tests
3. adaptive fip

© 2007 Jorg Ott & Carsten Bormann

\ HELSINKI UNIVERSITY OF TECHNOLOGY

NETWORKING LABORATORY

Reminder: Group Info Needed

» Send one email per group in exactly the following format (one line

per group member)
“Last name:First name:ID:email address”
Mustermann:Erika:12345Z:erikam@example.com

» Just about two groups (out of nine!) got this right!

© 2007 Jorg Ott & Carsten Bormann

\ HELSINKI UNIVERSITY OF TECHNOLOGY

NETWORKING LABORATORY

1. Solution Analysis

» Take a look at someone else’s protocol from assignment 1

» Write down your observations (high level perspective)

¢ |s the design spec sufficient to create interoperable implementations?
= Where is it not? What is missing?

¢ |s the protocol spec robust?
* Do you find errors? (concepts rather than details)
¢ What else do you observe?

» Practical matters:
e \We will pair two groups (in one case: three groups)
¢ We will send out the design documents to the respective groups
* You may update each other later on (but CC our course assistants)

© 2007 Jorg Ott & Carsten Bormann

N reLsink universiTy oF TeCHNOLOGY

NETWORKING LABORATORY

2. Attack your implementations

» Analyze your peer group’s and your own protocol specifications

e Which are angles that an attacker could use?
= To kill the server
= To launch a DoS attack against a competing journalist

» Go forit!
e Challenge your own implementation
e Challenge your peer group’s implementation

» Important: both 1) and 2) are to learn

e Grading of another solution will not depend on what you say about it
® You may perform analysis and testing jointly
e But we want independent submissions

© 2007 Jorg Ott & Carsten Bormann

NE reLsink universiTy oF TeCHNOLOGY

NETWORKING LABORATORY

Attacking fip... (1)

a) Write a small program that can generate arbitrary UDP packets

e Use it to generate data and control packets to send to your uft client and/or
server
= Packets should be somewnhat close to real ones, yet random

= Some suggestions: right total size but arbitrary contents, inconsistent field values (e.g.,

mismatch of packet length and length field), undefined values for selected fields, strange
file names, ...

e Observe and document what happens
® Suggest reasonable fixes

= To your protocol specification
= To your implementation

¢ Implement selected ones that can be done with reasonable effort

© 2007 Jorg Ott & Carsten Bormann 10

\ HELSINKI UNIVERSITY OF TECHNOLOGY

NETWORKING LABORATORY

Attacking fip... (2)

b) Exploit knowledge about your / the other protocol
Construct malicious packets to subvert protocol operation

e Of the server
e Of the communication relationship between the server and another client

» What do you learn?
e Document your observations
e What type of protocol refinements (if any) would be needed to fix this?

e If you like, try this out with your small random packet generator
= Sniff an existing session (e.g., one transmitting a large file at low rate)
= Add a second sender sending a different file and check the result

© 2007 Jorg Ott & Carsten Bormann

11

\ HELSINKI UNIVERSITY OF TECHNOLOGY

NETWORKING LABORATORY

3. Adaptive FIP

» Optimize your file transfer protocol
® |magine a cost function like C = Cd + Cv
Cd = EUR 0.01 / ms delay (reception time — transmission timestamp)
Cv = EUR 0.01/ byte sent
® Minimize the cost for a file transfer
= Calculate the cost for delay on the receiver side
- Running both sender and receiver on the same machine provides clock sync
- Return the cost in the last confirmation
= Calculate the cost for the volume on the sender side and compute the total cost

e How would your algorithm change if the cost function changes?

» Target environment
e Error-prone link concatenated with low speed link, high latency

] [[
S 1 L R
Varying Short b/w limited
error patterns queue link

© 2007 Jorg Ott & Carsten Bormann

12

N reLsink universiTy oF TeCHNOLOGY

NETWORKING LABORATORY

3. Adaptive FIP (2)

» The error pattern will vary in the mid-term
e Adapt!
» Enhance your protocol for the optimization
e Retransmissions incur cost in terms of delay (but minimize overhead)
= Doing only retransmissions will be too costly
® Proactive repair (e.g., XOR-based) FEC incurs cost in terms of overhead
= Sending every packet ten times (or 200% FEC) will also be too costly
¢ Provide feedback about the observed errors from the receiver to the sender
= Examples: loss rate, loss patterns
* Make the sender adapt for the optimization
= Reduce FEC, increase FEC
» Remember: FEC requires packets of equal length
* You may need to do some padding

» Implement and test!

© 2007 Jorg Ott & Carsten Bormann 13

NE reLsink universiTy oF TeCHNOLOGY

Testing: udppipe
udppipe -1 [lhost:]lport —c [chost:]cport —b <bitrate> [-d <delay>]

-l: transport address to receive UDP packets on from first uft peer; in the
opposite direction, packets are sent to the address they were received from

-C: transport address to send UDP packets to (the other uft peer needs to
transmit its responses to the address taken from recvfrom ())
-b: bit rate specified in kbit/s
-d: delay specified in milliseconds (default: none)
Ihost:Iport chost:cport
fip udppipe fip

Only the forward path will be impacted by udppipe modifications.

© 2007 Jorg Ott & Carsten Bormann 14

