
HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2007 Jörg Ott & Carsten Bormann 1

Some Findings from Assignment 1

Wide variety of specifications:
From 1 to 10 pages
More protocol spec vs. more implementation spec
More or less complete (at a first glance)

© 2007 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

2

Encodings
JSON (text-based)

Base64-encoded data

Unknown
3 x Box notation (binary)

Single bit to distinguish between data and control packet
Packet type field

Text-based for control, binary for packets?
RFC 822-style with 8-bit encoding for the data part
Binary 64-bit words + scrambling to avoid deterministic bit errors
HTTP-style + RFC 822

© 2007 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

3

Protocol Operation (1)
Connection setup

Explicit establishment via some handshake mechanism
Two-way, three-way, four-way, cookies against DoS

File transmission
Various forms of checksums (e.g., MD5, HMACs)
Sequence numbers
Data + ACK (cumulative, selective ACKs)
Data + NACK + a final ACK
Dynamic RTO calculation

Flow control
Explicit window size indication
Fixed window (negotiated at session setup)
Window size derived from delay x bandwidth product

© 2007 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

4

Protocol Operation (2)
Completion

Explicit end signaling + confirmation
Implicit server-side detection leads to confirmation
Plain shutdown (and hope)?

Parallel upload
Transparent to the protocol

© 2007 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

5

Some Observations on Possible Constraints
Limited sizes (filename < 255 characters)
Manual mapping: media type -> binary constant

Need to keep up to date

Sometimes many options
Is there a common baseline?

Did you think about sequence number wrap around?

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2007 Jörg Ott & Carsten Bormann 6

Protocol Design

Assignment 2:
1. Solution analysis
2. Stress tests
3. adaptive fip

© 2007 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

7

Reminder: Group Info Needed
Send one email per group in exactly the following format (one line
per group member)
“Last name:First name:ID:email address”
Mustermann:Erika:12345Z:erikam@example.com

Just about two groups (out of nine!) got this right!

© 2007 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

8

1. Solution Analysis
Take a look at someone else’s protocol from assignment 1
Write down your observations (high level perspective)

Is the design spec sufficient to create interoperable implementations?
Where is it not? What is missing?

Is the protocol spec robust?
Do you find errors? (concepts rather than details)
What else do you observe?

Practical matters:
We will pair two groups (in one case: three groups)
We will send out the design documents to the respective groups
You may update each other later on (but CC our course assistants)

© 2007 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

9

2. Attack your implementations
Analyze your peer group’s and your own protocol specifications

Which are angles that an attacker could use?
To kill the server
To launch a DoS attack against a competing journalist
…

Go for it!
Challenge your own implementation
Challenge your peer group’s implementation

Important: both 1) and 2) are to learn
Grading of another solution will not depend on what you say about it
You may perform analysis and testing jointly
But we want independent submissions

© 2007 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

10

Attacking fip… (1)
a) Write a small program that can generate arbitrary UDP packets

Use it to generate data and control packets to send to your uft client and/or
server

Packets should be somewhat close to real ones, yet random
Some suggestions: right total size but arbitrary contents, inconsistent field values (e.g.,
mismatch of packet length and length field), undefined values for selected fields, strange
file names, …

Observe and document what happens
Suggest reasonable fixes

To your protocol specification
To your implementation

Implement selected ones that can be done with reasonable effort

© 2007 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

11

Attacking fip… (2)
b) Exploit knowledge about your / the other protocol

Construct malicious packets to subvert protocol operation
Of the server
Of the communication relationship between the server and another client

What do you learn?
Document your observations
What type of protocol refinements (if any) would be needed to fix this?
If you like, try this out with your small random packet generator

Sniff an existing session (e.g., one transmitting a large file at low rate)
Add a second sender sending a different file and check the result

© 2007 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

12

3. Adaptive FIP
Optimize your file transfer protocol

Imagine a cost function like C = Cd + Cv
Cd = EUR 0.01 / ms delay (reception time – transmission timestamp)
Cv = EUR 0.01 / byte sent
Minimize the cost for a file transfer

Calculate the cost for delay on the receiver side
- Running both sender and receiver on the same machine provides clock sync
- Return the cost in the last confirmation

Calculate the cost for the volume on the sender side and compute the total cost

How would your algorithm change if the cost function changes?
Target environment

Error-prone link concatenated with low speed link, high latency

S R

Varying
error patterns

Short
queue

b/w limited
link

© 2007 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

13

3. Adaptive FIP (2)
The error pattern will vary in the mid-term

Adapt!
Enhance your protocol for the optimization

Retransmissions incur cost in terms of delay (but minimize overhead)
Doing only retransmissions will be too costly

Proactive repair (e.g., XOR-based) FEC incurs cost in terms of overhead
Sending every packet ten times (or 200% FEC) will also be too costly

Provide feedback about the observed errors from the receiver to the sender
Examples: loss rate, loss patterns

Make the sender adapt for the optimization
Reduce FEC, increase FEC

Remember: FEC requires packets of equal length
You may need to do some padding

Implement and test!

© 2007 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

14

udppipe -l [lhost:]lport –c [chost:]cport –b <bitrate> [-d <delay>]

-l: transport address to receive UDP packets on from first uft peer; in the
opposite direction, packets are sent to the address they were received from

-c: transport address to send UDP packets to (the other uft peer needs to
transmit its responses to the address taken from recvfrom ())

-b: bit rate specified in kbit/s
-d: delay specified in milliseconds (default: none)

Only the forward path will be impacted by udppipe modifications.

Testing: udppipe

fip udppipe fip

lhost:lport chost:cport

